
Consensus in Data Management:
From Distributed Commit to
Blockchain
Faisal Nawab1 and Mohammad Sadoghi2

1University of California, Irvine, USA; nawabf@uci.edu
2University of California, Davis, USA; msadoghi@ucdavis.edu

ABSTRACT

The problem of distributed consensus has played a major
role in the development of distributed data management sys-
tems. This includes the development of distributed atomic
commit and replication protocols. In this monograph, we
present foundations of consensus protocols and the ways
they were utilized to solve distributed data management
problems. Also, we discuss how distributed consensus con-
tributes to the development of emerging blockchain systems.
This includes an exploration of consensus protocols and their
use in systems with malicious actors and arbitrary faults.

Our approach is to start with the basics of representative
consensus protocols where we start from classic consensus
protocols and show how they can be extended to support
better performance, extended features, and/or adapt to dif-
ferent system models. Then, we show how consensus can be
utilized as a tool in the development of distributed data man-
agement. For each data management problem, we start by
showing a basic solution to the problem and highlighting its
shortcomings that invites the utilization of consensus. Then,

Faisal Nawab and Mohammad Sadoghi (2023), “Consensus in Data Management:
From Distributed Commit to Blockchain”, Foundations and Trends® in Databases:
Vol. 12, No. 4, pp 221–364. DOI: 10.1561/1900000075.
©2023 F. Nawab and M. Sadoghi

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2

we demonstrate the integration of consensus to overcome
these shortcomings and provide desired design features. We
provide examples of each type of integration of consensus in
distributed data management as well as an analysis of the
integration and its implications.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

1
Introduction

Consensus [49], [132]—which is the problem of making distributed
nodes reach agreement—has influenced data management systems and
research for many decades. This influence is due to consensus being a
basic building block that can be used in more complex distributed data
management systems while retaining correctness guarantees of the state
of the data and its recovery.

Consensus becomes relevant to data management systems when data
is distributed across multiple nodes. When multiple nodes are working
together, many complexities arise due to communication uncertainties
and the possibility of machine failures. This is the case in fundamental
data management problems such as distributed atomic commitment and
database replication [21], [56], [108], [129], [146]. Solving the intricacies
of distributed coordination, network uncertainties, and failures in such
complex data management problems is a daunting challenge. This has
led many systems designers to utilize consensus as a tool to build more
complex distributed protocols.

Consensus is solved in different ways depending on the system model
and assumptions. One major factor in the design of consensus protocols
is the failure model. The failure model can be a benign model—such as

3

The version of record is available at: http://dx.doi.org/10.1561/1900000075

4 Introduction

crash fault-tolerance—where a node fails by stopping to engage in the
protocol. Also, it can be a byzantine failure model [106], [132]—where
a failed node can act in arbitrary ways including acting maliciously
to influence the system negatively. In addition to the failure model,
the network communication model also has an influence on the design
and practicality of the proposed protocol. Communication models vary
in a spectrum between a synchronous model—where time bounds on
message reception are assumed—and an asynchronous model—where
messages can be delayed indefinitely.

Variants of consensus algorithms are designed to answer unique
challenges in different environments. Protocols that work best in a
tightly-connected cluster might not be suitable for a distributed net-
work separated by wide-area latency. Similarly, the workload plays an
influence on whether to optimize for reaching consensus or learning
about prior consensus outcomes. The goals of the protocol also play a
part in how consensus algorithms are designed. Many protocols focus
on achieving higher performance. However, some might optimize for
lower latency while others optimize for higher throughput. Other than
performance, a consensus algorithm might optimize for load balancing,
faster recovery, or ease of understanding and implementation.

Consensus has renewed interest in the data management community
in response to new problems. This interest started when consensus
algorithms were utilized in replication and atomic commit protocols
in distributed data management systems. With the growing interest
in cloud computing in the 2000s, consensus has been explored as a
means to design highly-available systems that are replicated across
commodity machines. As cloud computing continued growing, consen-
sus has also been explored in disaster recovery and multi-data center
environments where data is copied and distributed across large geo-
graphic locations. More recently, cryptocurrency and blockchain-based
applications reignited the interest in consensus and introduced a new
breed of consensus algorithms that allow unique properties such as open
membership to anonymous nodes [124], [155]. Data management systems
has explored the use of such blockchain-based systems and consensus
for applications spanning supply-chain management and decentralized
finance, among others.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5

This monograph presents consensus as well as how it has been used
to solve various distributed data management problems. The goal of
this monograph is to provide a foundation for the reader to understand
the landscape of using consensus protocols in data management systems
as well as empower data management researchers and practitioners
to pursue work that utilizes and innovates in consensus for their data
management applications. This monograph is not meant to be a survey
of consensus protocols nor it is a survey of data management systems
that uses consensus. Rather, it presents the foundations of consensus
and consensus in data management by presenting in more detail work
that has been influential or representative of the data management
areas we explore.

The monograph starts with a section to introduce the principles
of consensus (Section 2). This section builds the foundation needed
for the rest of the monograph to understand the consensus problem
as well as the core consensus protocols that are widely-used in data
management systems. Specifically, we will formally present the consensus
problem and its guarantees as well as the space of system model and
assumptions used by different protocols. Then, we present the paxos
protocol in detail. Paxos [98], [99] is one of the most influential consensus
algorithms that has been used—along with its variants—in many data
management systems. We then present other consensus algorithms in
different levels of detail to provide an intuition of the space of consensus
algorithms including variants of the paxos protocol. Finally, we present
how consensus is typically used in real systems using the abstraction
of state-machine replication and what are other distributed systems
problems that share properties with the consensus problem.

Section 3 presents background on the use of consensus in data
management which provides an intuition of why and how consensus
influences data management systems and the types of data management
problems that invite the use of consensus protocols. This is done by
providing a historical perspective of the development of distributed data
management systems and how consensus has played a role in the various
steps of this development. This section also presents background on
data management systems that is needed for the rest of this monograph.
It presents the system and data model of data management systems

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6 Introduction

that we utilize for the rest of the monograph. Also, it introduces the
problems of transaction processing, concurrency control and recovery,
as they are typically concerns that are involved while using consensus
algorithms in distributed data management systems.

Section 4 presents how consensus is used for the distributed atomic
commit problem, which is one of the most important problems in
distributed data management systems. The section begins with an
overview of the problem of atomic commitment and the significance of
this problem in distributed and partitioned databases. This includes a
detailed description of seminal protocols such as Two-Phase Commit
(2PC) [9], [56], [108]. Then, we present more details about distributed
atomic commit protocols that use consensus as a foundation. We present
in more detail the paxos commit protocol [58] to represent a class of
atomic commit protocols using consensus. We start from that description
to discuss other atomic commit protocols that use consensus in different
ways. We conclude the section with a discussion on the relation between
the atomic commit and consensus problems. This relation stems from
both protocols aiming to reach agreement across distributed nodes and
show how many elements of atomic commit protocols and consensus
protocols overlap and aim to provide similar properties.

Section 5 presents how consensus is used in replication protocols
where data copies are distributed across different nodes. This section
begins with an introduction to the problem of data replication and its
significance in data management systems for performance and fault-
tolerance. This includes presenting some early work on data replication
and the ensuing concurrency control concerns. Then, we discuss how
consensus can be used to solve the replication problem. In particular,
we show how the state-machine replication abstraction has been used to
enable multiple nodes to maintain copies of data that are consistent and
recoverable. We also discuss how replication of individual participants in
atomic commit protocols can be used as an alternative to the approaches
we have shown in Section 4. We also present different variations of how
consensus is used in different environments. In particular, we discuss
the use of consensus in replicating for highly-available systems that
gained popularity in cloud computing. Also, we present how consensus is
adapted and used in environments that span large geographic locations
such as multi-data center and geo-replicated systems.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

7

Section 6 expands the scope of the crash-tolerant commit protocols
to handle arbitrary failures. To this end, we explore in-depth the seminal
fault-tolerant consensus protocol known as Pbft (Practical Byzantine
Fault Tolerance) [34]. We present Pbft as the foundation for navigating
and examining the consensus landscape. We further explore speculative,
optimistic, linearized, and concurrent consensus designs. We conclude
this section by examining the topology of consensus in the context of
cross-shard and cross-chain designs. Our ultimate aim is to simplify and
make the design of these intricate protocols accessible to a wide range
of audiences, a stepping stone to further advancing this field.

Section 7 concludes the monograph with a summary and a discussion
of future directions. We discuss the potential impact of utilizing and
extending consensus in the areas of serverless computing, decentralized
applications, and edge-cloud systems.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2
Principles of Consensus

At a high-level, consensus is the problem of reaching agreement on a
single value among a set of distributed agents. Each agent may propose
a value to be agreed upon. However, only one value out of the proposed
values can be chosen. This means that any two agents cannot disagree
on the chosen value. To avoid ambiguity with other types of values
throughout the monograph, we refer to the value that nodes want to
agree on as the consensus value or c-value for short.

In this section, we formalize this high-level definition of consensus
and present examples of consensus algorithms. First, we begin by an
overview of the system model that we will use throughout the monograph.
This includes defining agents, failures, and communication as well
as the variation in these models. Then, we present the problem of
consensus formally using the system model. This includes the goals and
guarantees of consensus as well as some basic theoretical results about
the (im)possibility of consensus in different setups and system models.
After that, we discuss how consensus solutions are typically used in
distributed systems to provide more functionality beyond agreement.
Finally, we conclude by a discussion of similar problems that are related
to consensus or share some aspects with consensus.

8

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.1. System Model 9

2.1 System Model

2.1.1 Agents, State, and Events

The problem of consensus is applied to a distributed set of agents
(also called nodes) A = {a0, . . . , an−1}, where the number of agents is
n = |A|. Each pair of agents can communicate through a network link.
However, any two agents do not share any memory or state. Therefore,
communication is only possible via message passing.

Each agent ai has an internal state si
j , where i is the agent’s unique

id and j denotes the number of state transitions that agent ai took.
An agent’s state represents the memory of that agent that it uses to
process requests and make decisions on state transitions. All agents
start with a fixed initial state s0. A state transition from si

j to si
j+1

can be in reaction to an external or internal event. An example of an
external event is a request from a client or a message sent from another
agent. An example of an internal event is the expiration of a timer.

The set of events E is predefined for a consensus algorithm. Each
event e ∈ E can have a set of parameters e.p, where each parameter
e.p[i] is identified by an attribute e.p[i].attr and a value of that attribute
e.p[i].value. For ease of exposition, we sometime refer to a parameter’s
value using the attribute name, hence e.p[attr] would refer to the
corresponding attribute value. For example, a message from one agent
to another to propose a c-value is an event e ∈ E with parameters that
may include the id of the agent that sent the request, e.p[id], and the
c-value the agent suggests, e.p[c-value].

When an event is triggered at an agent, this leads to a state transition
from the current state si

j to the next state si
j+1. This state transition can

be deterministic or non-deterministic. Deterministic state transitions
are ones where applying an event e to a state si

j would always lead to
the same next state. Non-deterministic state transitions are ones where
that is not the case—applying e to a state si

j may lead to transitioning
to different states if applied in different times/conditions. An example of
non-deterministic state transitions are ones that utilize random number
generators or timestamps in the state transition.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

10 Principles of Consensus

2.1.2 Communication

Communication between agents is performed via network communica-
tion links where messages are sent from one agent to another. Networks
may incur various unpredictable behavior such as delaying and re-
ordering messages. Distributed algorithms typically define a model of
communication to mask these complexities. Communication models are
typically in the spectrum between a simple but less-realistic model of
communication called synchronous communication and a more realistic
model of communication called asynchronous communication.

The synchronous communication model assumes that a message that
is sent by an agent will be received within some known time bound ∆.
This means that if an agent sent a message at time t1, that message will
be received before time t1 + ∆. This model of communication simplifies
real communication behavior where messages may be arbitrarily delayed
or lost. However, it is a useful tool to study and design algorithms that
are later adapted to more realistic communication models. When the
communication model is synchronous, it is typical to assume that the
system processing and timeliness is also synchronous. In this monograph,
we assume that the time bound ∆ captures both system processing and
communication.

Distributed algorithms that build on the synchronous model typically
adopt the following approach [106]. The progress of the system is
modeled as moving in pulses (synchronous rounds), where a pulse is
a time duration that corresponds to the time bound ∆ in addition
to an upper bound, Φ, on the time it takes an agent to process and
send messages. In the beginning of the pulse, all agents are assumed to
have received all messages sent in the previous pulse due to the known
time bound ∆ and processing bound Φ. Then, each agent experiences
state transitions that correspond to the received messages (events). In
response to these state transitions, an agent may generate messages
that are sent to other agents within Φ time. These messages would be
received and processed at the other agents by the time of the next pulse.

The asynchronous communication model is the more practical coun-
terpart that factors in the possibility of arbitrarily delay and reordering
of messages. In this model, a message that is sent from one agent to

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.1. System Model 11

another can be arbitrarily delayed. This arbitrary delay models various
real network behaviors. It models the possibility of messages taking
a longer time to be delivered due to network congestion and routing
anomalies. It also models the possibility of message drops, since they
can be considered as messages that are infinitely delayed. The challenge
of using the asynchronous communication model when developing pro-
tocols is that it complicates the design and analysis of correctness and
liveness.

The partially synchronous communication models [46] is a middle
ground between the synchronous communication model—that does not
reflect real network behaviors—and the asynchronous communication
model—that introduces complexity to design and analysis. In a partially
synchronous system, there are upper bounds on both communication,
∆, and processing, Φ. The difference compared to synchronous systems,
is that in partially synchronous systems these bounds are not known.
Another version of partially synchronous systems assumes known upper
bounds for communication and processing, however, unlike the syn-
chronous model, these bounds do not hold at all times. Instead, there
is a Global Stabilization Time (GST), unknown to agents, where the
upper bounds hold for some limited time after GST.

Throughout this monograph, algorithms and analysis will assume the
use of the asynchronous model unless we mention otherwise. At times,
the same algorithm may be applied to different communication models
for different concerns. For example, analyzing the protocol correctness
(safety) may assume an asynchronous model to prove that it is safe with
a more realistic communication model, but may analyze the progress
properties (liveness) by assuming a partially synchronous model due to
the intractability of proving liveness in an asynchronous system where
messages can be arbitrarily and indefinitely delayed.

2.1.3 Failure

An agent in the distributed system may experience failures that prevent
its participation in the protocol. In this section, we present benign
failure models and leave byzantine failures that may lead to arbitrary
and malicious behavior of agents to Section 6.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

12 Principles of Consensus

An agent is considered to be live (not failed) if it performs the
instructions of the protocol and continues to make state transitions in
reaction to events it receives or triggers. In real deployments, agents
may crash or become unresponsive. The following are ways to model
such behavior.

The fail-stop failure model considers a failure of an agent that can
happen at any time. A failed agent does not receive or send any messages
and does not make any state transitions after it is failed. Also, once the
agent fails, it cannot restart. The omission failure model considers a
failure of an agent that can happen at any time. A failed agent may drop
a subset of the messages that it sends to other nodes. Unlike fail-stop
failures, an omission failure can be a temporary failure.

Consensus algorithms typically model failures by bounding the
number of possible failures, f , that can be tolerated by the algorithm.
This means that if the number of failures is up to f , then the algorithm
would still achieve its correctness properties. Otherwise, some of the
properties of the algorithm might not be satisfied. Some algorithms
consider mixed types of failures, where there is a different f value for
each type of failure considered.

2.1.4 Consensus Problem Statement

Consensus [49], [132] is the problem of ensuring that a group of agents
A agree on a common value that we refer to in this monograph as the
consensus value (c-value). Initially, agents are in an undecided state,
where a c-value is not agreed upon. Some agents may propose c-values
to the other agents. The agents engage in a consensus protocol to decide
one of the proposed c-values to be the agreed upon value.

The concept of deciding (also called choosing) a c-value has a local
and a global interpretation. The local interpretation considers a local
view of a single agent. An agent (locally) decides a value when it marks a
c-value as the agreed upon value. Once an agent decides a c-value, it com-
mits to the decision and it does not decide another c-value. The global in-
terpretation considers a logical view of the decided c-value as it pertains
to the state of the whole system. When a c-value is decided in a system,
it means that this is the value that all agents have (or will) agree on.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.1. System Model 13

The concept of proposing a c-value refers to the ability of an agent to
suggest a c-value to be decided. Multiple agents may propose different
c-values. The consensus algorithm provides a method to decide one of
these proposed c-values.

For a consensus algorithm to be correct, it needs to guarantee safety
and liveness conditions. We describe safety and liveness conditions next.

Safety

Safety is the property to guarantee that an incorrect state is never
reached. A safety condition is typically described in relation to the
current state of the system that is comprised of the states of all its
agents as well as all the transitions they have made to reach their
current state.

Definition 2.1. (Consensus Safety Conditions) The following are the
safety conditions for consensus:

• Agreement: Only one c-value may be decided.

• Validity: An agreed upon c-value must be one that has been
proposed by an agent.

The agreement condition is satisfied if all agents in A agree on the
same c-value. Consider that each agent ai ∈ A has a state value called
ai.c-value that represents what the agent believes to be the agreed
upon c-value. A violation to the agreement condition happens if there
exist two agents ai and aj that have different non-null values in their
state’s c-value, i.e., ∃ai,aj∈A(ai.c-value ≠ aj .c-value) ∧ (ai.c-value ≠
null) ∧ (aj .c-value ̸= null). Note that a violation of the agreement
condition can only happen if two agents disagree after both of them
have decided a value. For example, if an agent ai has decided a c-value
while another agent aj has not decided yet, this is not considered a
violation of the agreement condition. The above formulation represents
an undecided state by having a null value in c-value.

The validity condition is satisfied if the decided c-value is one that
has been proposed by some agent prior to reaching agreement. Consider
that a c-value, C, has been decided in a collective state of all agents

The version of record is available at: http://dx.doi.org/10.1561/1900000075

14 Principles of Consensus

Si = {s0
i0 . . . sn

in
}, where sj

ij
is the state of aj in Si. For validity to be

satisfied, at least one agent aj must have proposed the decided c-value
C in a prior state. This means that there is a state sj

l (where l < ij)
that has triggered proposing the c-value C. If no such state exists, this
is considered a violation of the validity condition.

Liveness

Liveness conditions are ones that describe guarantees on the progress
of the system towards achieving the goal of the system. In the case of
consensus, a liveness condition is a condition on guaranteeing that the
system makes progress toward agreement and that eventually a c-value
is decided.

Definition 2.2. (Consensus Liveness Condition) The following is the
liveness condition for consensus:

• Termination: A non-faulty agent must eventually decide a c-value.

The termination condition is satisfied if all non-faulty agents in A
can decide a c-value within a finite number of state transitions after a
c-value is proposed. Specifically, for each agent ai there is an associated
number ki that would represent the number of state transitions where
it is guaranteed that ai would have decided a c-value. This value, ki,
may be known or unknown. However, by proving that such a number
is finite for all agents, the algorithm guarantees liveness. Sometimes,
a liveness treatment takes an alternative approach by proving that a
c-value is decided within a bounded time instead of a bounded number
of state transitions. Parallels between the two approaches may be made.

Liveness of consensus algorithms varies from one algorithm to an-
other and the possibility of achieving it varies according to the commu-
nication and failure models. An important result in this space is the
following:

Definition 2.3. It is impossible to reach consensus in the presence of
one fault in a system with an asynchronous communication model [49].

What this result means is that liveness cannot be guaranteed for the
consensus problem where the communication model is asynchronous

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.1. System Model 15

and where the failure model allows the presence of at least one fault.
The interested reader may learn about how this impossibility result is
constructed from the original paper [49]. Here, we provide the sketch of
that proof at a high-level. The proof starts by considering a system of
agents with collective state S. The initial state, S0, is an undecided state
(a c-value has not been decided yet), since agents have not coordinated
yet. Events applied to S0 will lead to a state transition to S1 that would
either be decided or undecided. Likewise, at any state Si, there are
events that may lead to a state transition to a decided or undecided
state Si+1. The proof shows that this is the case for any Si, which
means that there is the possibility of taking an infinite sequence of state
transitions that are all undecided. To show that this is the case, the
proof includes lemmas to show that any undecided state Si would have
transitioned to an undecided state. Also, it shows that an inopportune
failure or message reordering due to the asynchronous communication
model can always lead to the next event triggering a transition to an
undecided state.

Despite being impossible in asynchronous systems, liveness can be
guaranteed and reasoned about by relaxing the synchrony model [44],
[46]. Also, the impossibility of liveness does not mean that safety cannot
be guaranteed. There are consensus protocols that are safe despite
assuming an asynchronous communication model and a failure model
where nodes may fail.

Learning

In addition to reaching consensus, agents or clients may want to learn
the decided c-value. This is called the learning process.

Definition 2.4. (Learning Safety) a learning process is safe if it only
learns a c-value if it is decided.

This condition is satisfied if the agent that learns the c-value—or
responds to a client with the c-value—must be in a state where the
c-value is decided. Consider that the agent ai is in state si

j which is part
of the collective state Sk when it learns or responds to a learner client.
The c-value must have been decided in a collective state Sl where l < k.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

16 Principles of Consensus

2.2 Consensus Algorithms

The significance of the consensus problem has led to many consensus
solutions. In this section, we provide a detailed description of paxos [98],
[99], which is a widely-used consensus algorithm and the inspiration
and basis for many consensus algorithms. We conclude this section with
a brief survey of consensus protocols and variants that aim to solve
various problems in different system models and environments.

2.2.1 Paxos

Paxos is a consensus protocol that is designed for an asynchronous
communication model. The number of agents in paxos is n = 2f + 1,
where f is the number of tolerated failures. Paxos divides the logical
roles to (Figure 2.1): (1) proposers that attempt to propose a new
c-value to be decided. There need to be at least f + 1 proposers that
are typically colocated with the agents. (2) acceptors that are used to
maintain the state of consensus. Acceptors receive proposed c-values
from proposers and decide whether to accept them or reject them.
There are 2f + 1 acceptors, each colocated with an agent. Acceptors
do not communicate with each other. Instead, they receive requests
from proposers that aim to change the state of enough acceptors for
consensus to be achieved. (3) learners that are used to learn the decided
c-value by asking acceptors.

Proposers

Acceptors

Learners

Agent 0

P0

A0

L0

Agent 1

P1

A1

L1

Agent 2

P2

A2

L2

Figure 2.1: Logical representation and organization of paxos components.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.2. Consensus Algorithms 17

For clarity of exposition, in this section, we assume that there are
2f + 1 acceptors colocated with 2f + 1 proposers. This means that each
agent out of the 2f +1 agents has a single proposer and a single acceptor
(Figure 2.1). This is typically how paxos is deployed in practice.

Design Principles

Paxos combines three design principles to reach consensus. The first is
the principle of rounds, where the protocol proceeds in numbered epochs.
The number of the epoch is called a round number or ballot number.
When a proposer receives a message from a proposer, it processes it only
if it has a ballot number that is larger or equal to every other ballot
number it has seen before. This allows proposers to break deadlocks in
a round by advancing to a round with a larger ballot number.

The second principle is majority voting. Every step of achieving
agreement in the paxos protocol involves the proposer sending a request
to a majority of nodes. If a majority of nodes agree on that step, then
the step is successful. Otherwise, the step has failed. The significance of
requiring a majority for the success of a step is that any two majority
quorums intersect. Therefore, if two proposers have made conflicting
steps, then that conflict is guaranteed to be detected because the two
majority quorums would necessarily intersect.

The third principle is that paxos is a leader-based protocol. For a
proposer to propose a c-value, it first needs to become a leader. Only
after becoming a leader would a proposer be able to propose a c-value.
This is done by dividing the operation of a proposer into two phases.
The first phase is the leader election phase (Phase 1), where the proposer
asks a majority of acceptors if it can be the leader of a round. If the
leader election is successful (a majority of acceptors agree), then the new
leader can proceed to the replication phase (Phase 2). In the replication
phase, the proposer asks a majority of acceptores if they accept a c-
value that it proposes. If a majority agree, then the c-value is decided.
Otherwise, it is not.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

18 Principles of Consensus

Agents State

Each agent ai contains a proposer, proposeri, and an acceptor, acceptori.
The state of the proposer, si,pr

j , contains a ballot number, si,pr
j .ballot,

that represents the round number that this proposer is currently in.
Each proposer uses unique ballot numbers that are not used by other
proposers. This is typically implemented by making the ballot number be
a lexicographically ordered integer pair (r,id), where r is a monotonically
increasing integer and id is a unique identifier of the proposer. A proposer
can update the ballot number as long as the new value is larger than
the current value.

The state of the acceptor, si,ac
j , contains the following: (1) the highest

ballot number it has seen, si,ac
j .highest-ballot. If a received message

belongs to a round with a smaller ballot number, the acceptor ignores
that message. This ballot number is initially set to a number that is
smaller than any possible proposer ballot number. (2) The c-value that
the acceptor has already accepted, si,ac

j .accepted, if any. If the acceptor
accepted more than one proposal, then only the one with the highest
ballot number is recorded. This is used for the acceptor to record whether
it has accepted a proposed c-value from a proposer. This includes both
the c-value of that accepted proposal, si,ac

j .accepted[c-value], and its
corresponding ballot number, si,ac

j .accepted[ballot]. This state variable
is initially empty.

Algorithms

The paxos protocol is driven by the proposers committing values on
behalf of clients. When a proposer wishes to propose a new c-value, it
needs to go through two phases: the leader election phase (sometimes
referred to as Phase 1), and the replication phase (sometimes referred
to as Phase 2). Figure 2.2 provides a schematic representation that will
be used in the following description.

Leader Election (Phase 1). The purpose of the leader election
phase is to prepare for the replication phase. This preparation aims to
perform two tasks: (1) prevent proposers with smaller ballot numbers
from proposing a c-value, and (2) discover any previous c-values that
were potentially decided.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.2. Consensus Algorithms 19

Leader Election Replication

A2

A1

A0

c
τ

Decide τ

Decide τ

Prepare prepare-ack Propose Accept Inform

Figure 2.2: A schematic representation of the normal-case operation of deciding a
c-value using the paxos protocol.

The proposer achieves both tasks by the following message exchange.
The proposer sends a prepare message (also called Phase1A message)
to at least a majority of acceptors. This prepare message contains
the proposer’s ballot number. When an acceptor ai receives a prepare
message, it checks the associated ballot number, prepare.ballot and com-
pares it with the highest ballot it has seen so far, si,ac

j .highest-ballot.
if the received ballot is equal or higher than what is previously seen
(prepare.ballot ≥ si,ac

j .highest-ballot), then the acceptor updates its
highest-ballot state variable to prepare.ballot. Then, it responds with
a prepar-ack message (also called a Phase1B message). Otherwise, if
prepare.ballot < si,ac

j .highest-ballot, then the acceptor discards the
prepare message. The acceptor may choose to send a negative acknowl-
edgment to avoid making the proposer wait for a long time.

The prepare-ack message contains three parameters. The first is
the ballot number from prepare.ballot denoted prepare-ack.ballot. The
second and third parameters correspond to the largest c-value previously
accepted by the acceptor, stored in the state variable si,ac

j .accepted. One
parameter (prepare-ack.accepted-cvalue) is of the accepted c-value read
from si,ac

j .accepted[c-value]. The other (prepare-ack.accepted-ballot) is
of the ballot number associated with that accepted value, si,ac

j .accepted

[ballot]. These state variables are set if the acceptor has ever received a
replication phase propose message previously from a previous leader, as

The version of record is available at: http://dx.doi.org/10.1561/1900000075

20 Principles of Consensus

we will explain shortly. If the acceptor did not receive such a message
previously, then the two corresponding parameters are set to null in the
prepare-ack message back to the proposer.

When a proposer receives a prepare-ack message, it first checks
whether the message includes information about previously accepted
proposals. If it does, then the proposer checks whether the previous
proposal’s ballot number (prepare-ack.accepted-ballot) is the highest it
has received so far in this round. If it is, then the proposer maintains
both the corresponding c-value and ballot number to be used in the
replication phase. The proposer maintains this information in the state
variables proposer.accepted[c-value] and proposer.accepted[ballot].

The proposer waits until it hears a majority of prepare-ack messages.
Once a majority of messages are received, the proposer considers itself
a leader and is ready to move to the next phase—the replication phase—
where it can propose a c-value. If a majority response is not received
within a predefined time threshold, the proposer considers that its
attempt to become a leader failed—potentially due to enough acceptors
having observed higher ballot numbers. The proposer increases the
ballot number and has the option of retrying.

When a proposer successfully receives a majority of prepare-ack
messages in a round, it is in the leader state. The implications of
proposer, ap

i , being in the leader state in round b (where b is the
corresponding ballot number) are the following: (1) No other proposer
can successfully become a leader or propose a c-value if its ballot number
is less than b. This is because a majority of acceptors responded with
prepare-ack for b, which is in part a promise not to respond to any
message with smaller ballot numbers. This enables the new proposer to
know that an old leader cannot appear and propose a c-value after ap

i

became a leader. (2) If a c-value has been decided by a prior leader (that
has a ballot number q less than b), then it is guaranteed that ap

i would
have learned about this value through the received prepare-ack messages.
This is because a previously decided value (with ballot number q) is
necessarily accepted by a majority of acceptors (as we will see in the
replication phase.) Let’s call that quorum that accepted the value at q as
Aq and call the majority quorum that responded to the leader in round
b as Ab. There is at least one acceptor aa

i that is in the intersection

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.2. Consensus Algorithms 21

of Aq and Ab. Since aa
i accepted the value in q, it would include that

accepted value in its response to the proposer in b.
Replication (Phase 2). The purpose of the replication phase is

to propose a c-value to be decided by acceptors. This is performed
by a message exchange between a leader (proposer that successfully
performed leader election) and a majority of acceptors. A successful
replication phase leads to deciding a c-value.

A leader starts the replication phase by picking a c-value to propose.
This is done by observing the responses that were received in the leader
election phase. Specifically, the leader observes whether there were
reports of previously accepted proposals from prepare-ack. If there are
more than one, the leader picks the one with the highest corresponding
ballot number. This can be read from proposer.accepted[c-value] and
proposer.accepted[ballot] that we described in the leader election phase.
This c-value is picked by the leader to be the one that it will try to
propose in the replication phase, even if it was proposed by another
leader previously. The reason why this is done is because this previously
accepted c-value might have been decided. If no previously accepted
values were reported in the leader election phase, then the leader has
the opportunity to pick its own c-value to propose.

Once a c-value is picked, the leader sends a propose message (also
called Phase2A message) to a majority of acceptors. The propose message
consists of a ballot number (that corresponds to the ballot number used
by the leader in the prepare message) and a c-value to propose (that
was picked after observing the prepare-ack responses from acceptors.)

When an acceptor receives a propose message, it checks its ballot
number. If it is higher or equal to the highest ballot number it has ever
seen, then the proposer accepts the proposal. Otherwise, the propose mes-
sage is discarded. When an acceptor accepts a proposal it performs two
actions. First, it updates the highest accepted proposal state variable,
si,ac

j .accepted, to the received proposal and its ballot number. Second,
it responds with an accept message (also called a Phase2B message.)

The leader waits until it hears from a majority of acceptors. Once
a majority of accept messages are received, the leader considers the
c-value to be decided. Some implementations may send a special inform
message to notify acceptors of the decided c-value.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

22 Principles of Consensus

Correctness

We provide here a high-level sketch of the correctness of paxos and
refer to other sources for detailed and more formal proofs [98], [99]. We
focus in this part on the two safety properties defined in Definition 2.1.
Validity is more straightforward to show than agreement. Validity—a
guarantee that a decided c-value is one that has been proposed by an
agent—is guaranteed because any decided c-value is one that has been
proposed by a leader in the replication phase. The leader either proposes
its own c-value or a previously accepted c-value that is proposed by
another agent. The rest of this section focuses on the other safety
guarantee—agreement.

The correctness of paxos stems from the intersection between its
majority quorums. Specifically, if a c-value, c, is decided, then this
means that a leader l has successfully received at least a majority of
accept messages. Assume that the leader decided this value in round b.
Paxos ensures that no other leader, l′, can successfully decide a c-value
other than c.

To show this, assume to the contrary that another value c′ is decided.
There are two cases of l′ deciding a c-value c′ in another round q (we
omit the trivial case where b = q):

1. q < b (Figure 2.3): assume that the quorum Qr
q is the quorum of

acceptors that accepted the the c-value c′ in q. Also, assume that
Qle

b is the leader election quorum that responds with prepare-ack
messages in round b. There exists at least one agent A in the
intersection of Qr

q and Qle
b since they are both majority quorums.

Since q is less than b, this means that A accepted c′ in q before
responding with a prepare-ack in b. This means that by the time
it is responding with a prepare-ack in b, it has already accepted
c′, which means that it will include it in the prepare-ack message.
This leads to l picking the value c′ as its proposal in the propose
message in round b. In this case, the proposal at b is the same
as the proposal at q (c = c′), which is a contradiction to our
assumption that they are different values.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.2. Consensus Algorithms 23

Ballot = q Ballot = b

l′

A

l

Responds with c’
as previously accepted

Proposes c’
(contradiction to proposing c)Proposes c’

Leader Election Replication (Qrq)
Leader

Election (Qleb) Replication

Figure 2.3: A schematic representation of an example of case 1 (q<b) in the proof
sketch of paxos correctness.

2. b < q: consider an agent A in the intersection of the quorum
Qr

b that accepted the c-value c in b and the quorum Qle
q that

responded with prepare-ack messages to l′ in q. This case is further
divided into two sub-cases:

a. The prepare message from l′ is received at A before the propose
message from l is received (Figure 2.4). In this case, A would
not accept the proposal from l because it has already seen a
message with a higher ballot number. This is a contradiction
since c is not decided.

b. the prepare message from l′ is received at A after the propose
message from l is received. In this case, A would respond
with the c-value c that it accepted as part of the prepare-ack
to l′. Similar to case 1 above (Figure 2.3), this leads to l′

using the c-value c as its proposal, and thus c = c′, which is
a contradiction.

Paxos Liveness

The paxos protocol does not guarantee liveness due to the impossibility
result mentioned in Definition 2.3 [49]. Such impossibility of achieving
liveness can be manifested in different scenarios. One example of such
scenario is the following (Figure 2.5). Consider a paxos instance with

The version of record is available at: http://dx.doi.org/10.1561/1900000075

24 Principles of Consensus

Ballot = q

Ballot = b

l′

A

l

This message would not be sent because
the proposal with b is invalid (a contradiction)invalidates ballot b

Leader Election
Leader

Election (Qleq) Replication (Qrb) Replication

Figure 2.4: A schematic representation of an example of case 2(a) (q>b and the
prepare from l’ is received at A before the propose from l) in the proof sketch of
paxos correctness.

three agents, A, B, and C. Initially, agent A attempts to become a
leader, so it sends a prepare message to B with ballot number 1. Agent
B responds with a prepare-ack since this is the highest ballot it has
seen so far. Agent A receives the prepare-ack and becomes the leader of
round 1. However, in the meantime, agent C also attempts to becomes
a leader and sends a prepare message to B with ballot number 3. Agent
B responds with a prepare-ack to C since 3 is the highest ballot number
it has seen so far. Now, when agent A sends a propose message with
ballot number 1, it will not be accepted since it is not the highest ballot
seen by B. At this moment, agent A may want to retry with a higher
ballot number, 4, and sends a prepare message to B. Agent B can now
accept this new prepare, which invalidates any future propose messages
by C with ballot number 3.

Observe in the previous scenario how two aspiring leaders, A and
C, may continuously invalidate each others’ proposals. This scenario
can continue indefinitely, which demonstrates how the message com-
munication and delivery patterns may lead to a paxos scenario that
cannot reach agreement. This is possible because the communication
and delivery patterns are arbitrary due to the asynchronous communica-
tion model (Section 2.1.2). In the asynchronous communication model,
messages can be delayed indefinitely, which may cause two agents to

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.2. Consensus Algorithms 25

Ballot = 1 Ballot = 4

Ballot = 3

C

B

A

Unsuccessful propose Unsuccessful propose

Figure 2.5: A schematic representation of a paxos livelock scenario with three nodes.
The color of the arrows represents their corresponding ballot numbers.

continuously invalidate each other without learning about the other
agent’s rounds.

Relaxing the communication model is one way to reason about
liveness. For example, assuming a synchronous or partially synchronous
communication model enables us to assume that communication latency
between agents is bounded (Section 2.1.2). With such bounds, mecha-
nisms to guarantee liveness were proposed [44], [46]. In these approaches,
the guarantee of receiving messages can be used to design a protocol
that is guaranteed to terminate after a certain number of rounds. This
is possible because messages sent at the beginning of a communication
round are guaranteed to be delivered—unlike the paxos livelock scenario
where two aspiring leaders do not receive each others messages. In a
real system, these approaches guarantee liveness as long as the assump-
tions about the weaker communication model are met. An alternative
to weakening the communication model is to weaken the consensus
problem by introducing initial assumptions about the decided values
and/or to tolerate approximate or probabilistic agreement [15], [28], [45].
Similarly, other methods place restrictions on the system model. This
includes the use of failure detectors, which are separate components
that report—potentially inaccurately—on suspected failures but these
reports are eventually corrected. It is shown that with the assumption
that a failure detector exists, it is possible to build consensus protocols
that guarantee liveness in an asynchronous model [36]. However, the

The version of record is available at: http://dx.doi.org/10.1561/1900000075

26 Principles of Consensus

existence of such failure detectors remains restricted and assumes that
these failure detectors communicate using a synchronous or partially
synchronous links.

Learning

In addition to proposers and acceptors, learners are components that
aim to learn the decided value by communicating with acceptors. A
learner learns that a c-value is chosen if a majority of acceptors have
accepted it. This can be achieved in different ways. One way is for
the learner to poll acceptors and ask for the c-values they accepted.
If a majority of acceptors accepted the same c-value, then the learner
considers that c-value as the decided one. Another algorithm is to have
acceptors send messages proactively to learners whenever they accept
a c-value. The learner knows a c-value is decided once a majority of
acceptors have sent the same c-value.

The learning algorithm can also be optimized by having proposers,
acceptors, and learners cache the decided c-value and propagate it to
other agents. For example, a proposer that decides a c-value may send
a special inform message to acceptors and learners notifying them of
the outcome. Anyone that has received such a message can respond
immediately with the decided c-value for future inquiries instead of
repeatedly polling a majority of acceptors.

Multi-Paxos

A common optimization that is used when paxos is deployed in practice
is the multi-paxos optimization [35], [148]. The goal of multi-paxos is
to reduce the needed number of message exchanges. Paxos commits a
new c-value by proceeding through two phases: a leader election and
replication phases. An observation about these two phases is that in
the leader election phase, the proposer aspiring to become a leader,
does not need to know what c-value it wants to commit yet. Therefore,
it is possible to perform the leader election phase early before the
c-value is ready to propose. This allows removing the leader election
communication exchanges from the path of execution of committing
new c-values.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.2. Consensus Algorithms 27

This multi-paxos optimization is particularly useful in practical
scenarios where consensus is used continuously to decide c-values (for
example, we will present later how using paxos in state machine repli-
cation entails using paxos to commit a c-value for each log position
in a replicated log.) Therefore, instead of having to do two phases of
communication to commit each c-value in the path of execution, the
leader election is performed early, and then the replication phase is
performed when the c-value is known and ready to be committed.

A further optimization in multi-paxos reduces the amount of mes-
sages that need to be sent for leader election. Even if leader election is
performed early out of the path of execution, its corresponding commu-
nication affects bandwidth. Also, continuously performing early leader
election of future commitments might interfere with the replication
phases of ongoing commitments. To this end, multi-paxos consolidates
leader election messages. Specifically, instead of sending individual pre-
pare messages for a group of paxos instances, a single prepare message
is sent with the range of identifiers for the future paxos instances.

For example, consider that future instances are numbered in chrono-
logical order, where the first paxos instance has id 0, the second has id
1, and so on (this is similar to the use case in state machine replication
we will present later.) A proposer may send a prepare message indicating
in it that it wants to be a leader for instance ids i to j. This represents
a small overhead increase compared to the original prepare message.
When an acceptor receives this message, it applies the prepare logic of
all the paxos instances in the range, and responds only if the conditions
apply to all relevant instances. Like the consolidated prepare messages,
the acceptor consolidates the prepare-ack messages.

It is possible to set the range of paxos instances to be to infinity,
meaning that a proposer becomes the leader of all instances greater
than a specified paxos instance number. This requires both the proposer
and acceptor to have efficient representations of paxos instances and
their state that enables expressing the state of an infinite range of paxos
instances.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

28 Principles of Consensus

2.2.2 Other Consensus Protocols

Due to the importance of the consensus problem, there has been a lot of
activity and work to both develop new consensus protocols and extend
existing consensus protocols.

Paxos has been an influential consensus protocol in terms of deriva-
tive work and variants of the paxos protocol. Follow up works by Leslie
Lamport explore generalizations of the paxos protocol. This includes
Fast Paxos [101]—that introduces the concept of a fast path to de-
cide c-values using a single round of communication—and Generalized
Paxos [100]—that extends paxos to enable reaching agreement on par-
tial order rather than total order. A body of work extends paxos to
manage reconfiguration [55], [102]–[105], [112]—which is the problem
of changing the set of agents running the consensus protocol. Load
balancing is an important extension to paxos to avoid the overhead that
is placed on the leader. This led to extensions such as S-Paxos [23] that
distributed some of the work of the leader to other replicas which reduces
the load on the leader. Works such as DPaxos [126] and WPaxos [8]
explore extensions such as hierarchy, locality, and sharding to enable
better performance in geo-replication settings. Utilizing variants of
paxos such as Fast Paxos [101] and Generalized Paxos [100] has also
been explored to reduce the amount of wide-area communication in
protocols such as MDCC [95]. Mencius [116] is a multi-leader sys-
tem that is based on paxos. It aims to enable faster latency by par-
titioning log entries across agents and serving client requests using
the closest agent and its assigned log entries. Moraru et al. [122] pro-
pose Egalitarian Paxos (EPaxos) that aims to reduce communication
complexity by utilizing a fast path design and information about con-
flicts. Paxos variants to utilize the special properties of the network
infrastructure include Ring Paxos [117], Sift [87], and NOPaxos [110].
Also, work to avoid the overheads and bottlenecks of networking is
proposed, such as PigPaxos [38] that studies aggregation and piggy-
backing for paxos, and work that studies pipelining and batching for
paxos [138]. Whittaker et al. studies the modularity of consensus proto-
cols and proposed paxos variants that emphasize this modularity [151]–
[154].

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.2. Consensus Algorithms 29

Paxos relies on the intersection of majority quorums to ensure safety.
However, it has been shown that majority quorums are not necessary
for safety. Instead, Howard et al. [82] made the observation that what
is necessary for safety is only the intersection of leader election and
replication quorums.1 Therefore, it is not necessary to have different
quorums from the same phase intersect with each other (e.g., two leader
election quorums do not need to intersect).

This makes quorum definitions more flexible, allowing different opti-
mizations as we will show in different places throughout the monograph.
An example of quorum definitions that are allowed is shown in Fig-
ure 2.6. The first is grid quorums, where acceptors are organized in a
g×g grid, where g =

√
n. A leader election quorum can be any column

in the grid, and a replication quorum can be any row in the grid. This
reduces the size of quorums from majority quorums (⌊n+1

2 ⌋) to
√

n.
Fast Flexible Paxos [81] extends on flexible paxos [82] to study quorum
intersection and how to reduce the intersection requirements.

Flexible grid quorums

Figure 2.6: An example of a flexible grid quorums definition where circles repre-
sent agents, red rectangles represent leader election quorums, and green rectangles
represent replication quorums.

Other than paxos, there has been a number of consensus protocols.
Viewstamp Replication [127] is a primary-based replication system
that in normal-case operation acts similarly to multi-paxos. Viewstamp

1Observe how the intersection conditions in the correctness section above were
all between a leader election and replication quorums.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

30 Principles of Consensus

Replication utilizes a special view change process to tolerate failures.
RAFT [128] is a consensus-based replication system that aims to provide
a more understandable solution for consensus. Zab [85] is an atomic
broadcast algorithm that is used to propagate state from a primary to
a set of backup nodes in a consistent and fault-tolerant manner. These
various protocols have many common features but also differ in various
ways. Vive La Difference [149] studies these similarities and differences.

The atomic broadcast problem is closely related to the problem
of consensus [71]. At a high level, the atomic broadcast problem is to
ensure that all messages sent by agents are totally ordered. In the next
section, we discuss how consensus is typically used to achieve such total
ordering in replicated logs.

2.3 Using Consensus

Consensus has been widely-used in distributed systems to enable coor-
dination and replicating state across devices. In this section, we present
the common ways of using consensus for distributed coordination as
well as common optimizations.

State Machine Replication

One of the most common ways of using consensus in distributed systems
is as a basic building block for state-machine replication (SMR) [97],
[109], [139]. SMR is a method that enables distributed agents to syn-
chronize their state. The goal is to have the state of any pair of agents
to be identical without the aid of any centralized process or storage.

The State Machine is the main abstraction for synchronization that
the different agents try to synchronize. This State Machine, for example,
can be a representation of the state of the file system, database, etc.
The set of possible states for a State Machine is S. The State Machine
accepts commands from the set of possible commands C. Applying a
command c ∈ C to a state s ∈ S leads to a deterministic state transition
to state s′. The deterministic nature of the transition means that any
agent would make the same state transition if it starts with the same
state and applies the same command.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

2.3. Using Consensus 31

For example, a SMR system for a file system may start with a state
of a folder that contains three files. If a command is applied to that state
to add a new file, then the state transitions to a folder with four files.
This step can be made to be deterministic by ensuring that running the
command will always lead to the same outcome given the original state.
A non-deterministic step can be one that depends on external factors
such as a random number generator or the wall clock time.

A common approach for SMR is to order all the received commands
in a replicated log, that we will call the SMR log. Each agent has a copy
of the SMR log and they coordinate to ensure that the ith entry in any
SMR log is identical to the ith entry in other SMR logs. Each agent
starts from a genesis state, s0, for the State Machine that all agents
share. Then, an agent processes commands according to their order in
the SMR log. This ensures that all agents start from the same state
and apply commands in the same order. Because commands lead to a
deterministic state transition, the state of all agents is identical after
applying the same number of commands. An example of SMR is shown
in Figure 2.7.

Consensus for State Machine Replication

Consensus protocols are typically used to solve the SMR problem.
Specifically, to build a SMR system, there needs to be a mechanism to
achieve agreement on the state of the replicated SMR log. Consensus can
help achieve that agreement. However, consensus is typically formulated
as the problem of achieving agreement on the state of a single value.
In the case of SMR, we need to achieve agreement on the state of a
growing SMR log.

Consensus protocols are applied to the SMR problem by considering
each position in the SMR log as an independent consensus instance.
Basically, we are reducing the problem of achieving agreement on the
state of the whole SMR log to achieving agreement on each log position
individually. This reduces the complexity of the problem and invites a
direct application of consensus solutions to the SMR problem.

When a command is received by an agent, the agent picks the next
available SMR log position, Li, and engages in a consensus process with

The version of record is available at: http://dx.doi.org/10.1561/1900000075

32 Principles of Consensus

Agent 0

x=5 y=10 x=15

SMR Log

State
x=15, y=10, z=0

Agent 1

x=5 y=10 x=15

SMR Log

State
x=15, y=10, z=0

Agent 2

x=5 y=10

SMR Log

State
x=5, y=10, z=0

Figure 2.7: An example of a replicated system with three nodes running a SMR
protocol. The initial state of each node consists of three variables, x, y, and z, that
are initialized to 0. A consensus process is used to write to each log position to ensure
agreement and fault-tolerance. In the example, agents 0 and 1 have three entries in
their log and the state of the agent reflects processing the first three requests. Agent
2, however, did not receive the third entry yet and its state reflects processing the
first and second entries only.

the other agents to decide the c-value for Li. The decided c-value for
Li is considered the command to be processed when a State Machine
reaches position Li. This c-value may correspond to what the agent
received and wanted to commit, or it might be the c-value of another
agent. If a command did not win a certain SMR log position, the agent
can retry with a larger SMR log position.

In summary, by applying a consensus solution to achieve agreement
on the content of each position in an SMR log, we are able to ensure
that all agents agree on the content of the whole log.

An alternative approach that some protocols follow is to reformulate
the problem of consensus for SMR as a problem of building a replicated
log [128]. This approach has many similarities to the atomic broadcast
problem [71].

The version of record is available at: http://dx.doi.org/10.1561/1900000075

3
Background

3.1 Overview and Model of Data Management

Data management systems are complex software that consists of many
components and layers [48], [129], [136]. In this monograph, we provide
a simple model of data management systems that will help us under-
stand the role of consensus in these systems. This model strips away
many components and layers that are not particularly relevant in the
interaction between data management systems and consensus protocols.
These other components—such as query processing, caching hierarchy,
and indexing—are orthogonal to most work that uses consensus for
data management.

Our model of a data management system consists of the following
two components:

1. Data storage: this component represents persistent storage that
is used by the data management system. It provides two data ab-
stractions. The first is a key-value store abstraction. The interface
of this abstraction consists of a put(in: key, value) and get(in:key;
out: value) operations. The second data abstraction is a log. The
interface of the log consists of a append(in: entry; out: position)

33

The version of record is available at: http://dx.doi.org/10.1561/1900000075

34 Background

and read(in: position). We omit the implementation details of the
abstractions, including the use of caching mechanisms and garbage
collection. A call to put or append immediately leads to persisting
the request.

2. Data access manager: this component is responsible for schedul-
ing requests and coordination with other agents to ensure the
correctness of operation. For example, a data access manager may
delay or block certain requests to ensure the absence of concur-
rency anomalies. The interface of the data access manager is a
transactional interface, where a request is a bundle of read and
write operations to be processed as a whole (we talk more about
transaction processing in the next section.) We assume that the
data access manager is the only component with access to the
data storage component.

3.2 Transaction Processing, Concurrency Control, and Recovery

A database transaction is a widely-used access abstraction in data
management systems. A transaction consists of a collection of read
and write operations. A data management system ensures the ACID
properties of transactions [57], [72]:

A. Atomicity: this is an all-or-nothing guarantee. A transaction
either appears fully (with all its operations) to other transactions
or not at all.

C. Consistency: if the state of the data management system is con-
sistent (i.e., satisfies the correctness invariants of the application),
then applying a transaction to it would not lead to an inconsistent
state that violate the application’s invariants.

I . Isolation: transactions running concurrently should not interfere
with each other.

D. Durability: if a transaction is committed, its effects will always
be part of the data management system state.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

3.2. Transaction Processing, Concurrency Control, and Recovery 35

We talk in the rest of the section on the role of consensus to achieving
isolation and durability in distributed data management systems.

3.2.1 Consensus for Isolation

Isolation is a property that manages concurrent execution of transactions.
Concurrent execution is possible in different settings. For example, it
can occur if the operations of transactions are interleaved within a
single machine. It can also occur if transactions are processed across
different machines (agents). This is the case that is most relevant to this
monograph. When transactions are processed concurrently across agents,
there is the possibility of conflicting activity between two agents—e.g.,
two agents reading and writing the same data objects at the same time.
This invites the use of consensus protocols as their purpose is to make
distributed agents achieve agreement. As we will see in the rest of the
monograph, consensus can be used in different ways for distributed
agents to reach consensus on the state of data or operations to ensure
the isolation of transactions.

Here, we will present some background on isolation and concurrency
control for database transactions. This will aid in understanding how
consensus helps in achieving these properties in later sections. We will
focus on serializability [21], which is a widely studied and adopted
isolation guarantee.

At a high-level, serializability aims to create the illusion that all
transactions running on the system are isolated from all other trans-
actions. Therefore, from the perspective of a transaction t, any other
transaction either appears to has been processed and committed com-
pletely prior to the start of t, or is processed and committed completely
after the commitment of t. An outcome of this property is that the
state of the database reflects a serial order of the execution of the
transactions that were applied to it. For example, for a database where
two transactions (t1 and t2) were committed, a serializable final state
of the database must reflect the ordered execution of any of the trans-
actions’ permutations: t1 → t2 or t2 → t1. Consider a database with
initial state x = 0, t1 is a transaction that updates the value of x to
(x + 1)2, and t2 is a transaction that updates the value of x to (x + 2)2.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

36 Background

A serializable execution of the two transactions would either yield 9
(which corresponds to running t1 first) or 25 (which corresponds to
running t2 first.) Any other outcome of running these two transactions
is not serializable.

Note that serializability is a guarantee of the appearance of a serial
execution, not that transactions must be processed serially. Therefore,
the operations of transactions may still interleave as long as the outcome
of processing all transactions appear serial after they commit. This is the
attraction of serializability, which is that the guarantee is strong—where
a programmer can write transactions as if they are running in isolation—
and the possibility of interleaving allows transaction processing to
interleave operations to achieve more performance through concurrency.

As an example of allowed interleaving, consider the two transactions
t1 and t2 that we defined above. Assume that in addition to the operation
of reading and updating x that t1 also writes the value 5 to y and t2
also writes the value 10 to z. The following is a representation of
the operations of the two transactions: t1 = {r1(x)w1(x)w1(y)} and
t2 = {r2(x)w2(x)w2(z)}, where ri(x) is an operation of t1 reading x

and wi(x) is an operation of t1 writing to x (we omit the value-to-be-
written for brevity). Now, consider the following execution history that
interleaves the two transactions: h = r1(x)w1(x)r2(x)w2(x)w2(z)w1(y).
In this execution history, t1 starts first by reading and writing to x.
Then, t2 performs all its operations before the final operation of t1.
If we start from a state of a database with all data objects set to 0,
then the execution history h yields a database with state {x = 9; y =
5; z = 10}. This state is equivalent to the outcome of serially running
t1 followed by t2. Because the outcome of h is equivalent to a serial
history, h is said to be serializable. On the other hand, a history such
as h′ = r1(x)r2(x)w2(x)w2(z)w1(x)w1(y) is not serializable.

A method to understand whether operations from different transac-
tion can be interleaved (or reordered) is to observe if they conflict with
each other. The notion of a conflict describes whether two operations
access the same data object and one of the two operations is a write.
When two operations conflict with each other, interleaving them has
consequences. Because at least one of the two operations is a write, when
two conflicting operations are interleaved, the write might influence

The version of record is available at: http://dx.doi.org/10.1561/1900000075

3.2. Transaction Processing, Concurrency Control, and Recovery 37

the view of the other conflicting operations, thus breaking the isolation
guarantee of each transaction. Two read operations do not conflict even
if they access the same data object. This is because a read does not
change the view of the state seen by the other operation, and therefore,
the isolation illusion is maintained.

Using the notion of conflicts, it is possible to have a systematic
way to describe a serializable execution of operations. This is done by
using a serializability graph SG = (V, E), where the vertices V are
the transactions and the edges E are conflicts between transactions. A
transaction ti has a directed conflict to tj in one of the following cases:

• Write-read conflicts (ti →wr tj): this conflict exists if there is a
write operation in ti that writes a value that is read by a read
operation in tj .

• Write-Write conflicts (ti →ww tj): this conflict exists if there is a
write operation in ti that writes a value that is overwritten by a
write operation in tj .

• Read-write conflicts (ti →rw tj): this conflict exists if there is
a read operation in ti that reads a value written by a write
operation in some transaction tk that itself is overwritten by a
write operation in tj .

A conflict between two transactions represents an ordering requirement;
if a conflict from ti to tj exists, then ti must be ordered before tj in any
equivalent serial execution.

Using the serializability graph, a serializability check is performed
by observing whether a cycle exists. If a cycle exists, this means that
the execution is not serializable. This is because a cycle denotes that
there is at least one sequence of conflicts that starts from a transaction
t and ends at the same transaction. However, because a conflict is an
ordering requirement, a cycle means that transaction t must be before
itself in an equivalent serial execution, which is not possible.

The absence of cycles in the serializability graph, on the other hand,
is sufficient to prove that the execution is serializable. Because there
are no cycles, the graph can be used to come up with a serial execution

The version of record is available at: http://dx.doi.org/10.1561/1900000075

38 Background

equivalent by traversing the graph and ordering transactions according
to the conflict relations.

There are many isolation guarantees other than serializability that
range in their level of strictness/flexibility [6]. For example, Snapshot
Isolation [6], [20] does not guarantee the equivalence to a serial order.
Instead, it guarantees that each transaction operates on a consistent
snapshot of the database and that a transaction commits only if there
are no write-write conflicts with concurrent transactions.

3.2.2 Replication for Durability

Durability is a property of transactions that the effect of a committed
transaction should be always observed even after a crash or unavailabil-
ity of the whole or parts of the system. In centralized data management
systems, this is typically ensured by persisting the state of committed
transactions in persistent storage so that they can be recovered after
a crash. Distributed data management systems widens the scope of
how durability can be achieved. In particular, the state of committed
transactions might be recovered from a remote node. Furthermore,
highly-available systems take another approach to durability by main-
taining different copies of the same data so that even during an agent’s
crash/unavailability, other agents still have the state of committed
transactions.

This later approach is relevant to this monograph and to the use
of consensus in data management systems [22], [93]. When multiple
copies of the same data are maintained across distributed agents, the
agents need a way to coordinate access so that the state of a committed
transaction is not lost after a crash/unavailability of some agents.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

4
Consensus for Distributed Commit

4.1 Overview of Distributed Databases and Atomic Commitment

Distributed data management systems face unique challenges where
consensus can be helpful. Distributing a data management system can
be done for various reasons. Distributing the state across different
agents means that the failure of one agent does not lead to the failure
of the whole system. Also, distributing the state may lead to better
performance characteristics by distributing the load across different
agents.

When the state of the database is distributed across agents, there is
a need to ensure that transactions are processed correctly (that they
are ACID-compliant.) Achieving ACID guarantees is complicated in
distributed data management systems due to the potential for message
delays and drops when agents are communicating with each other. For
this reason, distributed data management protocols have been developed
to ensure ACID properties for transactions across distributed agents.

In this section, we focus on the distributed atomic commitment
problem. This problem considers a setup of distributed data management
systems where data is partitioned and each partition (also called shard)
is placed on an agent. Partitions are mutually-exclusive, so each data

39

The version of record is available at: http://dx.doi.org/10.1561/1900000075

40 Consensus for Distributed Commit

object belongs to exactly one partition. An atomic commit protocol
ensures that a transaction is processed atomically—the outcome of a
transaction is either observed on all corresponding partitions or at none
of them.

An atomic commit protocol is typically divided into a commit
protocol, a termination protocol, and a recovery protocol. The commit
protocol is the protocol that controls how live agents coordinate with
each other to commit a transaction. The termination protocol controls
how a live agent reacts when it detects the failure of an agent to attempt
to complete the commitment of the transaction. The recovery protocol
controls how an agent recovers its state after a failure or crash.

We begin by describing popular distributed atomic commit protocols
and then show how consensus has been used to solve the distributed
atomic commitment problem.

Two-Phase Commit

Two-Phase Commit (2PC) [56], [108] is a distributed atomic commit
protocol that ensures that all agents of a distributed data management
system agree to commit a transaction before the effects of the transaction
is applied to any agent. Typically, an agent—which holds a partition of
the data—agrees on committing a transaction if it does not conflict with
any transaction it has committed or agreed-to-commit and if it does
not lead to a deadlock with other transactions. Agreeing on committing
a transaction is also called preparing a transaction. Also, an agent
might delay preparing a transaction if it is waiting for other events to
occur first—for example, if the transaction reads a value that has not
committed yet.

The 2PC commit protocol distinguishes between two roles (Fig-
ure 4.1): (1) a coordinator that drives the commitment of the trans-
action, and (2) a participant that represents an agent with a shard
that is accessed by the transaction. At a high-level, the 2PC protocol
proceeds in two steps. In the first step, the coordinator pull participants
to know whether they agree on committing (i.e., preparing) the trans-
action. A participant is an agent hosting a shard that is accessed by
the transaction. The second step happens after the coordinator hears

The version of record is available at: http://dx.doi.org/10.1561/1900000075

4.1. Overview of Distributed Databases and Atomic Commitment 41

Participant A

Shard A

Coordinator

Participant B

Shard B

(1) Prepare

(2) Vote (yes/no)

(3) Decision

 (commit/abort)

Figure 4.1: A 2PC system with a coordinator and two participants. Each participant
hosts a shard (data partition) of the data. The normal-case flow of operations in
2PC begins with a prepare message from the coordinator to the participants. Then,
participants respond with yes or no votes. Finally, the coordinator responds with the
decision—commit if all participants voted yes, and abort otherwise.

from all participants. If all of the participants agree on committing the
transaction, then the coordinator sends a commit message to all of them
to commit the transaction. Otherwise, if at least a single participant
objected to committing the transaction, then the coordinator sends an
abort message to all participants.

Note how aborting a transaction is a unilateral decision that can be
taken by the participant. This is because committing a transaction at
that participant might lead to an inconsistency or deadlock. Therefore, a
commit decision cannot be forced on the participant. Another important
property of the 2PC protocol is that when a participant prepares a
transaction—by responding positively in the first round—this is a
promise to be able to commit/apply the transaction if the coordinator
sends a commit message. To this end, the participant ensures that future
transactions that conflict with a prepared transaction are not prepared
or committed.

The steps of a 2PC protocol are shown in the states diagrams in
Figure 4.2. The coordinator (at agent 1) starts from the initial state q.
When a transaction request is received from the client, the coordinator

The version of record is available at: http://dx.doi.org/10.1561/1900000075

42 Consensus for Distributed Commit

Coordinator

q

w

c

Participant

q

w

c

client request

prepare

all yes votes

commit

a no vote or timeout

abort

prepare

no

prepare

yes

abort
-

commit
-

Figure 4.2: A state transition diagram of 2PC. A state with the label q is an initial
state, label w is a waiting state, label a is an abort state, and label c is a commit
state. Each state transition is denoted by the trigger of the transition (the part over
the line) and actions that are performed with the state transition (the part under
the line).

broadcasts a transaction commit request to participants, which are
agents that maintain shards that are accessed by the transaction. Then,
the coordinator waits to hear yes or no responses from the participants.
If at least one response was a no, then the coordinator aborts the
transaction. If all responses were yes, then the coordinator has the
option of either committing the transaction or aborting the transaction.
The choice to commit the transaction is the natural choice to make
useful progress. The choice of aborting a transaction with all yes votes
is to allow the coordinator to unilaterally abort a transaction in the
case of a timeout, a client choosing to abort the transaction, or a similar
event.

The participant algorithm (as shown for the case of a participant at
agent 2) starts in the initial state q. When a transaction commit request
is received from the coordinator, the participant decides whether it can
commit the transaction. Typically, this entails trying to acquire locks
on all accessed data objects. If this is successful, then the transaction
is prepared and a yes vote is sent back to the coordinator. Because
locks are held, this means that no conflicting transaction can commit
with a prepared transaction. Otherwise, if locks could not be acquired,
then the transaction is unilaterally aborted and a no vote is sent to the

The version of record is available at: http://dx.doi.org/10.1561/1900000075

4.1. Overview of Distributed Databases and Atomic Commitment 43

coordinator. If a yes vote is sent back, then the participant waits for
the final decision by the coordinator. This is either a commit or abort
decision. In both cases, when the decision is received, corresponding
locks are released. What is different is that if the decision is commit,
then the participant applies the write operations to storage prior to
releasing the locks.

Blocking Scenario. One of the challenges faced in the 2PC protocol
is that it may lead to blocking scenarios. The reason for this blocking
scenario is that a participant with a prepared transaction would not
release the resources until it hears the final decision from the coordinator.
If the coordinator crashes while the participant is in the prepared state,
then the participant blocks until the coordinator recovers from the
crash.

At such a scenario, the participant cannot simply abort the transac-
tion while the transaction is prepared. The reason for this is that the
participant cannot know whether the coordinator has committed the
transaction, responded to the client that the transaction committed,
and then crashed before responding to the participants. At this case,
aborting a transaction by a participant might lead to an inconsistency
between the state of the database and the response to the client. Like-
wise, the participant cannot commit the transaction if it did not hear
from the coordinator, since the coordinator might have aborted the
transaction and responded accordingly to the client before crashing.

This blocking problem of 2PC ignited many follow-up works in
the database community to propose non-blocking atomic commitment
protocols [58], [70], [107], [120], [141], [142]. This includes variants that
are based on utilizing consensus. Using consensus—as we will show—
turns out to be a good candidate to implement non-blocking protocols.
We will motivate the use of consensus and overview solutions adopting
this strategy in this section.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

44 Consensus for Distributed Commit

Coordinator

replication group

Participant 1

Participant 2

Participant 3

Approach 1: Resilient Coordinator Approach 2: Resilient Participants

Coordinator

replication group

Participant 1

replication group

Participant 2

replication group

Participant 3

replication group

Figure 4.3: An illustration of the two approaches to utilize consensus for atomic
commit protocols. The illustration of both approaches contains a coordinator and
three participants.

4.2 Consensus for Distributed Atomic Commit

4.2.1 The case for consensus for atomic commit protocols

As we have observed, distributed atomic commit protocols face chal-
lenges in terms of blocking scenarios due to agent failures and network
partitioning (when network link failures separate nodes into partitions
and a node in one network partition cannot communicate with any
node in another partition.) Some atomic commit protocols overcome
these scenarios but result in increasing the overhead and complexity
of the protocol. It was then observed that the core of these blocking
scenarios and complexity to solve them is that a commit decision might
be lost after an agent failure or network partitioning. To overcome this
problem and to enable remembering a commit decision, consensus can be
used. Consensus ensures that once a value is chosen across participating
agents, this value can be recovered by any majority of agents. This
insight has been used in various forms to solve the blocking scenarios of
distributed atomic commit protocols by using a consensus component.
The consensus component is integrated with the atomic commit protocol
to solve this problem while maintaining the coordination patterns of the
original atomic commit protocol without incurring significant additional
complexity.

There are two main approaches to utilizing consensus for the atomic
commit protocol (Figure 4.3). The first is to maintain a set of agents to
collectively act as the coordinator of the atomic commit protocol. When

The version of record is available at: http://dx.doi.org/10.1561/1900000075

4.2. Consensus for Distributed Atomic Commit 45

a commit decision is made, it is committed to a consensus protocol
across these agents. Therefore, as long as a majority of these agents
are reachable and running, the decision can be restored. We will call
this approach the resilient coordinator approach. The second approach
focuses on participants of the atomic commit protocol. Each participant
of the atomic commit protocol is implemented as a set of agents that
collectively act as the participant. When the participant makes a step
in the atomic commit protocol, it is first committed to the consensus
protocol. Therefore, as long as a majority of agents that represent a
participant are reachable and running, the steps and decisions made
by a participant can be restored. We call this approach the resilient
participants approach. Next, we provide more details about the two
approaches and present implementations that follow these approaches.

4.2.2 Approach 1: Resilient Coordinator Decision

The resilient coordinator approach ensures that a coordinator’s commit
decision can always be recovered by replicating it across a set of agents,
where a majority of these agents are assumed to be reachable and
running. This observation can be traced to early work in making atomic
commitment resilient by replicating the state of the coordinator and
using a distributed consensus protocol [43], [121].

In its most basic form, this approach adds a consensus step after a
coordinator reaches a commit/abort decision but before propagating that
decision to clients and other participants. Consider the following sample
solution that utilizes paxos as a consensus protocol that is augmented
to 2PC. The system model consists of 2f + 1 coordinators and N
participants, where N is the number of partitions. The 2f+1 coordinators
run a paxos protocol. When a request to commit a transaction is received
it is written to the paxos log using the paxos algorithm. Once the
transaction information is written to the log, it can be safely recovered
as long as a majority of coordinators are available.

The leader that wrote the transaction to the paxos log then sends a
prepare message to the participants. Each participant follows the 2PC
protocol and responds with a yes or no message. When the leader makes
a decision of whether to commit or abort, it writes that decision to the

The version of record is available at: http://dx.doi.org/10.1561/1900000075

46 Consensus for Distributed Commit

paxos log. Once written, the decision is propagated to the participants
and client.

This design ensures that the information about the transaction is
preserved despite the failure of a coordinator agent, due to writing
the transaction information in the paxos log initially. The design also
ensures that the commit/abort decision is preserved despite the failure
of a coordinator agent, due to writing the decision in the paxos log
before propagating it.

If a coordinator crashes at any time, another coordinator can pick
up and recover the commit/abort decision if it has been made. Consider
the case of the failure of a leader coordinator. This failure can happen
in one of the following two cases:

• Before the transaction information is written to the paxos log: In
this case, a decision has not been propagated to participants or
clients, since sending the decision to participants and clients need
to happen after persisting the decision in the log. In this case, the
new leader can unilaterally abort the transaction. It does so by
first writing the abort decision to the paxos log. If it is written,
then the new leader propagates the decision to the participants
and client.

• After the transaction information is written to the paxos log: In
this case, the new leader recovers the decision whether a commit or
abort decision. Then, it propagates that decision to the participants
and client.

In both cases, if a failure happens to the new leader, then another leader
is elected that performs the same recovery steps.

4.2.3 Approach 2: Resilient Participants

The second approach is to make the decision made by the participant
be resilient. Therefore, when a participant makes a yes or no decision,
it is made resilient before it is propagated to other agents.

Paxos Commit. This basic approach has been adopted by various
solutions. One of the early examples of this approach is the Paxos
Commit algorithm [58]. In Paxos Commit, a paxos cluster is used

The version of record is available at: http://dx.doi.org/10.1561/1900000075

4.2. Consensus for Distributed Atomic Commit 47

to obtain agreement on the decision of each participant (this cluster
can be colocated with participants.) The paxos cluster maintains n

paxos instances, one for each participant, where n is the number of
participants. Each participant writes their decision (yes or no) in the
paxos instance that corresponds to them. The transaction commits
if all participants wrote yes. Otherwise, the transaction aborts. The
transaction coordinator (or any other agent) can infer the outcome of
the transaction by observing the values written by the participants.

If one of the participants experienced a failure, then a decision is
not written in its paxos instance. The coordinator, after the expiration
of a timer, suspects that the participant failed and tries to write a no
decision in the participant’s paxos instance. In this attempt to write no,
the coordinator either learns that a decision has been written, in which
case it considers that decision, or it successfully writes no on behalf of
the participant. This step is possible because a decision has not been
written to the paxos instance, and thus would not have led to a decision
that conflicts with the unilateral no decision.

Paxos Commit adopts this basic approach of utilizing a consensus
instance for each participant. Any consensus protocol can be used in
this approach. However, it is possible to optimize the number of message
exchanges by considering a specific consensus protocol. Paxos Commit
discusses how messages can be saved when using the paxos protocol as
the consensus component of the Paxos Commit protocol.

Spanner. Another example of the resilient participants approach is
Google Spanner [40], a distributed multi-data center data management
solution. We focus on the distributed transaction commit protocol in
Spanner that builds on the 2PC protocol. In Spanner, data is partitioned
into n partition. Each partition is maintained by a cluster of geo-
replicated nodes, where the number of nodes in the cluster is 2f + 1.
Each one of these nodes is replicated in a different data center to tolerate
data center-scale failures.

Within a shard’s cluster, paxos is used to replicate the steps that
are taken to process 2PC requests. Specifically, the paxos leader in that
cluster processes the requests that correspond to the 2PC participant of
its shard. By replicating the steps of 2PC, a failure of a shard’s leader
can be tolerated by electing a new leader that reconstructs the state of
the participant and uses it to answer incoming requests.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

48 Consensus for Distributed Commit

The protocol proceeds in the following way (Figure 4.4). When a new
transaction is ready to commit, a coordinator—which can be co-located
with a shard leader—first logs the prepare message information in stable
storage. Then, it sends a prepare message to the paxos leaders of the
accessed shards. For example, if there are three accessed shards, then
the coordinator sends a prepare message to three nodes, where each
node is a leader of one of the accessed shards.

client

datacenter 1

datacenter 2

datacenter 3

Prepare message
Replicate

prepare
Replicate

Commit
commit

message

replicate

commit

Figure 4.4: A schematic diagram of the operation of Spanner in a scenario with
three data centers each hosting three shards, X, Y, and Z.

When a shard leader receives a prepare message, it acquires the
corresponding locks for the transaction to be committed and it logs
the prepare message information in persistent storage. Afterwards, the
shard leader replicates the prepare information to the other nodes in
the cluster using the shard’s paxos instance. Then, the leader waits
for the information to be successfully replicated (i.e., accepted by a
majority of nodes). After a leader replicates the prepare information
successfully, it responds to the coordinator acknowledging that their
shard has prepared the transaction.

The coordinator waits until it receives prepare acknowledgments
from all shards’ leaders. Once it does, the coordinator commits the
transaction locally by writing the commitment information to persistent
storage. Then, the coordinator replicates the information using paxos

The version of record is available at: http://dx.doi.org/10.1561/1900000075

4.2. Consensus for Distributed Atomic Commit 49

to a majority of nodes. Once the commit information is replicated
successfully, the coordinator sends commit messages to the leaders
of accessed shards. At this point, the client can be notified that the
transaction has committed.

When a shard’s leader receives the commit message, it persists and
replicates the information to a majority of nodes in the shard’s cluster.
Once the replication round is successful, the shard’s leader releases the
locks.

Replicated Commit. The next example we present for this ap-
proach is of Replicated Commit [114]. Replicated Commit builds on
the Spanner protocol and aims to reduce the number of cross-data
center messages by rearranging the patterns of replication. Specifically,
instead of each 2PC participant replicating the 2PC steps, the whole
transaction is replicated and processed locally at a data center and then
global coordination is performed to ensure that the outcome is both
safe and fault-tolerant.

The system model of Replicated Commit is similar to Spanner.
Data is partitioned into n partitions. Each partition is maintained by a
cluster of 2f + 1 geo-replicated nodes to tolerate data center outages.
We assume that data is fully replicated in each data center for ease of
exposition.

The Replicated Commit protocol proceeds in the following way (Fig-
ure 4.5). An application client—client for short—drives the commitment
of the transaction. When the transaction is ready to commit, the client
replicates the transaction commit request to one of the accessed shards.
The shard can be chosen arbitrarily and will act as the coordinator of
the commitment (in each data center, the node of the chosen shard acts
as the coordinator of that transaction commit request).

When a coordinator node receives the commit request after it is
replicated, it forwards the commit request—as a 2PC prepare request—
to the other cohorts within the same data center. The other cohorts are
nodes that correspond to shards accessed by the transaction in the data
center. Note that this step is performed locally at the data center for all
data centers, which means that no wide-area messages are exchanged.

When a cohort node receives the prepare request, it acquires the cor-
responding locks and logs the prepare information in persistent storage.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

50 Consensus for Distributed Commit

client

datacenter 1

datacenter 2

datacenter 3

paxos propose

message

2PC

prepare
Paxos

accept
2PC

commit

Figure 4.5: A schematic diagram of the operation of Replicated Commit in a
scenario with three data centers each hosting three shards, X, Y, and Z.

Then, they respond to the coordinator in their data center—which is
also an intra-data center message exchange.

When a coordinator in a data center receives acknowledgments from
all its cohorts, then it accepts the commit request by sending an accept
message to other coordinators as well as the client. When a coordinator
receives a majority of accept messages, then it considers the transaction
has committed and sends the commit decision to the cohorts in its
data center. When a node receives a message that the transaction has
committed, it releases all corresponding locks.

4.3 The Relation Between Atomic Commitment and Consensus

The effectiveness of protocols that utilize consensus to solve the dis-
tributed atomic commit problem inspired work to explore the similarities
of goals and operation of the two problems [59], [115], [123], [162]. Guer-
raoui [59] shows that the problem of non-blocking atomic commitment
is harder than consensus. The Consensus and Commitment (C&C)
framework [115] finds a model that unifies the operation and steps of
consensus protocols (such as paxos) and commitment protocols (such
as 2PC). The observation that is made by that work is that there are
steps in both protocols that aim to achieve the same goal. Specifically,

The version of record is available at: http://dx.doi.org/10.1561/1900000075

4.3. The Relation Between Atomic Commitment and Consensus 51

the unification model consists of four phases (for ease of exposition we
project the model phases to protocols based on paxos and 2PC rather
than general consensus and atomic commit protocols):

• Leader election: The coordination in both paxos and 2PC are
driven by a single node; a leader in paxos and a coordinator in
2PC. This phase captures the similarity in the selection of a leader
in paxos and the selection of a coordinator in 2PC.

• Value Discovery: Both paxos and 2PC aim to reach agreement;
paxos on an arbitrary value, and 2PC on whether to commit or
abort a transaction. This phase aims to capture the similarity of
how both protocols need to discover what are the candidate values
to be committed. In paxos, this is done in the leader election
phase where agents respond with previously proposed c-values. In
2PC, this is done by collecting yes and no votes.

• Fault-tolerant agreement: Both paxos and 2PC protocols empha-
size fault-tolerant agreement. In paxos this is done by replicating
proposals and ensuring that a proposal is not committed until it
is replicated. In many 2PC variants and follow up work, the votes
and/or decisions are replicated for fault tolerance.

• Decision: This phase captures the propagation of the decision
from the leader/coordinator to other nodes after commitment.

Understanding the similarities of consensus and atomic commit
protocols can help in understanding these protocols better. Also, they
can enable finding better protocols that combine aspects of both proto-
cols [115], [123], [162].

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5
Consensus for Data Replication

5.1 Overview of Data Replication

An area of data management where consensus has a significant impact
and role is the area of data replication. Data replication describes the
feature of replicating the state of data across multiple distributed nodes,
where each node has a copy of the data. The copy at a node can be a
full copy or a partial copy (i.e., containing a subset of the data.) For
ease of exposition, we assume full replication throughout this section.

5.1.1 Benefits of Data Replication

Data replication is used to increase the resilience of data in the face
of machine faults. When there is more than one copy of the data, a
failure of one node—hosting one of the copies—would not prevent the
progress of the application if another node—hosting another copy of the
data—takes over and continues the operation. Consensus mechanisms
are helpful for this function as they enable making progress with a
subset of the nodes, which enables tolerating the failure of a subset
of nodes. For example, as we have discussed when presenting paxos,
progress can be made with only a majority of agents. Therefore, if any

52

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5.1. Overview of Data Replication 53

group of nodes fail, progress can still be made as long as the number of
failures is less than a majority.

Another benefit of replication is increasing read availability, where
data is accessible from more than one node. This enables clients to send
requests to different nodes, reducing the load on each replica. Load
balancing techniques can be used to ensure that the participating nodes
receive proportional workload. Consensus is critical for this function as
it helps coordinate the different copies so that they are consistent with
each other. Without a method to coordinate access, it is possible that
different nodes may receive conflicting and/or inconsistent outcomes
for their read operations.

Replication may also be performed to scale the performance of the
system. This is not always the case with replicated systems, since in-
creasing the number of nodes leads to increasing coordination overhead
which degrades performance. However, in certain cases, and when done
carefully, replicating the state of an application may help scale perfor-
mance. This is the case for operations that do not require extensive
coordination such as read and commutative operations. Another case
where scalability is possible through replication is when nodes work
collaboratively to process requests, which reduces the workload on each
node.

5.1.2 Replicating Databases

Database replication has been an active area of research for many
decades due to the benefits of replication. There are various ways to
categorize replication strategies for data management systems. Next,
we provide a quick overview of some of them and refer the interested
reader to more comprehensive surveys [89].

Primary-copy vs. update-anywhere replication. Primary-copy
replication approaches designate a single agent as a primary and all
other agents as secondaries. The purpose of this designation is to make
the primary the point of entry to the replication process. An operation
is first sent to the primary to be processed and then replicated to other
secondary agents. The advantage of this approach is that it simplifies
the coordination protocol. However, the downside is that the primary

The version of record is available at: http://dx.doi.org/10.1561/1900000075

54 Consensus for Data Replication

becomes a single-point of failure. Primary-copy approaches overcome
this challenge by providing mechanisms to detect a primary failure and
then designate one of the secondary agents as the new primary. In terms
of the performance bottleneck, existing systems enable serving requests
through secondary nodes in special cases—by relaxing consistency [16]
or utilizing special types of operations [118].

On the other hand, the update-anywhere replication approach is
different in that it allows operations to be sent to any replica that
manages the operation’s execution. This approach overcomes the single-
point of failure problem of primary-copy approaches. However, it adds
to the complexity of the design as agents need to coordinate with each
other to ensure that their copies are consistent. Without a single-point
of synchronization, this coordination can be become expensive, requiring
extensive coordination and/or gossip messages.

Eager vs. lazy replication. Eager replication approaches return a
response to the client only after the client’s request is successfully com-
mitted and replicated to enough replicas to tolerate f failures. The eager
approach ensures that the client gets the response after the operation
is performed and committed, avoiding consistency anomalies. However,
this means that a client must wait for the necessary coordination to be
performed first which leads to the potential of high latency. Lazy replica-
tion, on the other hand, returns the response to the client immediately
and performs the replication process lazily in the background after the
response is sent back to the client. This enables returning a response
to the client fast. However, in the presence of an inopportune conflict
or failure, it is possible that the response to the client is erroneous or
inconsistent with other client responses.

In some literature, eager replication is termed synchronous replica-
tion while lazy replication is termed asynchronous replication. These
terms, however, are not connected to the communication model mean-
ings of synchronous and asynchronous communication.

Read and write quorums. Some replication protocols for data
management systems take the approach of defining read and write
quorums. A read quorum is what a read operation uses to serve a read
operation, while a write quorum is what a write operation uses to serve
a write operation. The insight behind this approach is that if the two

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5.2. Consensus for Data Replication 55

quorums intersect, then this means that a read quorum will always be
able to see a previously committed write—if the two quorums intersect,
then there is at least one agent that is in both the read and write
quorums. A common approach for defining read and write quorums
is to make them majority quorums which ensures intersection. Other
approaches differentiate between read and write quorums based on
the workload and the priorities of the application. For example, in a
read-heavy workload, it is beneficial to make the read quorum small
even at the expense of a larger write quorum to ensure intersection.

One of the issues that are faced in this approach is that multiple
write operations may be delivered differently on different agents. For
example, in a system with three agents, a0, a1, and a2, consider that a0
issues a write w0 that updates the value of x to 0, while a1 issues a write
w1 that updates the value of x to 1. If the two writes are concurrent,
it is possible that a0 orders its write before w1 and a1 orders its write
before w0. In such a case, readers may have a conflicting view of the
value of x based on which agents they asked. To overcome this problem,
a write rule needs to be applied to ensure that the values converge to
a single value in the absence of new writes. A common write rule is
Thomas’ Write Rule [146] in which each write operation has a unique
sequence number—for example, a combination of a timestamp and
the source node’s unique id. Each node maintains the write operation
with the higher sequence number regardless of the order in which write
operations are received.

5.2 Consensus for Data Replication

5.2.1 The case for consensus for data replication

The overview in the previous section shows how data replication proto-
cols aim to maintain copies of data across distributed agents with two
main goals: (1) ensure that the copies are consistent, and (2) ensure
that agent failures are tolerated (up to f failures). These two goals are
similar to the goals of distributed consensus protocols such as paxos. A
consensus protocol aims to ensure agreement across distributed agents
which corresponds to the first goal. Additionally, consensus protocol
reach agreement while tolerating f agent failures. This observation has

The version of record is available at: http://dx.doi.org/10.1561/1900000075

56 Consensus for Data Replication

led many system designers to explore the use of consensus protocols as
a basis to solve the data replication problem.

5.2.2 State-Machine Replication

The most common way to utilize consensus for data replication utilizes
the state-machine replication (SMR) approach (see Section 2.3 for
more information about SMR and how consensus is used to solve the
SMR problem.) In this case, a data management system writes data
operations or database transactions in the SMR log. The SMR log acts
as the ordering mechanism of database transactions, where the order
of transactions in the SMR log would represent the execution order
in all replicas. By following the same order of transaction execution,
the state of replicas is guaranteed to be consistent. The following are
examples of systems that follow the approach of utilizing consensus and
state-machine replication for data replication.

Megastore

Megastore is a data management system proposed by Google [17]. We
focus on how they manage the replication of a partition of data which
is relevant to this section. Megastore’s goals are to provide transparent
recovery from failures without sacrificing strong consistency (i.e., ACID
transactions.) For this reason, they avoid the use of lazy (asynchronous)
replication strategies as they may lead to inconsistencies. Also, they
avoid the use of protocols that require a “heavyweight” primary node
as “failover requires a series of high-latency stages often causing a
user-visible outage.” Alternatively, Megastore utilizes paxos to manage
replicating state as it allows maintaining strong consistency as well
as transparent recovery from failures. Transparent failure recovery is
achieved because paxos does not distinguish a failed state which would
require additional complexity in terms of detecting it and reacting to it.

In Megastore, a partition is replicated across a number of agents.
The agents maintain a SMR log where paxos is used to commit entries
to the SMR log. An entry represents a commit record of a transaction
that includes the write/update operations of the transaction. Therefore,
the SMR log acts as a write-ahead log of transactions. Megastore

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5.2. Consensus for Data Replication 57

applies a form of multi-version concurrency control (MVCC) to commit
transactions. Each transaction is timestamped and its corresponding
write/update operations have the same timestamp of the transaction
that wrote them.

A transaction client (client for short), reads the state of the data as
of the timestamp of transaction that was most recently written in the
SMR log. It continues processing the transaction locally by reading as of
the assigned timestamp and buffering writes. When the client is ready
to commit a transaction (all reads and buffered writes are complete), it
starts the transaction commit process. This process starts by assigning
the transaction a commit position in the SMR log. This position is the
position that is right after the position that the transaction read from.
For example, if the transaction read as of the timestamp of a committed
transaction in log position i, then the assigned commit position is log
position j = i + 1.

The client acts as a paxos proposer and attempts to write the commit
record of its transaction to SMR log position j. This attempt might
succeed—in which case the transaction is considered committed—or
fail—in which case the transaction is considered aborted and the client
may retry/restart the transaction.

Advisory locking. One of the challenges faced in the commit
process of Megastore is that all concurrent transactions compete on
writing to the same log position. For example, consider two concurrent
transactions t1 and t2 that both are reading as of the same log position
i. Since both transactions would compete to writing to the same log
position j, only one of them can commit. If there are n concurrent
transactions, then only one can commit and the rest n − 1 transactions
abort. This leads to wasted overhead since transactions would restart
processing every time they are aborted. To avoid this wasted overhead,
advisory locks can be used to sequence transactions so that they are
processed back-to-back.

Although advisory locks help in reducing wasted overhead, there is
still a limit on throughput since only one transaction is processed at a
time. To avoid this, Megastore apply bulk processing techniques that
allow batching transactions together. This allows writing a batch of
commit records collectively which increases the aggregate throughput.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

58 Consensus for Data Replication

Local reads. Megastore allows reads to be local, thus not incur-
ring the overhead of writing to the SMR log. This is possible because
Megastore replicates writes to all replicas. There are three types of read
operations: (1) current read: this read is the most consistent out of
the three. it first ensures that the writes of all committed transactions
are applied to the state of the database and then it reads from the
database. (2) snapshot read: this read operation reads as of the most
recent applied transaction. Therefore, it is possible that it misses the
writes of a committed transaction that is not applied to the database
yet. (3) inconsistent read: this read operation does not consider the
state of the log or committed transactions, but rather, it reads the latest
state of the data directly. Inconsistent reads are useful when there are
stringent latency requirements and no strong consistency requirements.

Single round-trip writes. A write to the SMR log may incur two
round-trip latencies to a majority of replicas—one for leader election
and another for replication. It is possible to avoid the extra round trip
and write to the SMR log in one round-trip latency. This is possible by
applying methods similar to multi-paxos where an agent performs the
leader election phase for many log positions at once. In Megastore, a
similar approach is performed. When an agent writes to a log position,
it is considered to be the leader of the next log position. This can be
thought of as piggybacking the leader election round of log position
i + 1 with the replication round of log position i.

Paxos-CP

Paxos-CP [131] is a replication protocol that builds on Megastore to
increase its concurrency. Megastore, as we described above, faces a limit
of committing transactions back-to-back which limits concurrency and
throughput. Paxos-CP proposes two techniques to increase concurrency:
Combination and Promotion.

Combination. The combination technique explores opportunities
to combine concurrent transactions into one SMR log position. Specif-
ically, when a client (i.e., proposer) is attempting to write a commit
record for its transaction, it first observes the previously accepted values
that are reported in the leader election phase of paxos. By observing the

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5.2. Consensus for Data Replication 59

responses, the client can deduce whether it is possible that any one of
these values could have been decided in a prior round. If a value could
have been decided, then the client must proceed with that value to avoid
conflicts. If not, then the client is free to choose any value in its replica-
tion phase. Because of this, the client can combine the transactions that
were reported in the leader election phase (ones that are concurrent
to the client’s transaction), and send a propose message to decide the
combined set of transactions together. The client constructs the com-
bined entry so that there are no conflicts between them, i.e., if there
is a conflict between two transactions, then one of them is discarded.

One of the critical steps of the combination algorithm is to decide—
after collecting prepare-ack messages—whether the client can freely
choose a c-value for the replication phase. To do so, the client tests
whether each received c-value could have been committed in a prior
round. For example, in a scenario with 5 agents, consider the case when
a client receives 4 prepare-ack where two agents report accepting the
c-value x. In this case, x could have been committed in a previous
round because it is possible that the fifth node—that did not respond—
has also accepted x, which means that a total of three agents (i.e., a
majority) could have accepted the c-value. Consider another case where
no more than one agent has reported accepting the same c-value out of
the four responses. In this case, it is impossible that one of these four
c-values has been chosen, since regardless of the state of the fifth node,
no c-value could have acquired a majority of acceptances. In this case,
the client may combine commit records for the replication phase.

For combination to work, there is a need to wait for more agents
than a simple majority. This may add latency to execution. However,
in some cases—when the round-trip latency between agents is similar—
responses from more agents are received close to each other. This means
that the latency overhead is not always significant. Another overhead
that is important to note is verifying what transactions can be combined
with each other, and finding the combination set of transactions that
would maximize concurrency. This can be a challenge when the number
of transactions is large or if batching is performed by each client. In
such cases, best-effort approaches might be more suitable that deriving
the optimal set of combined transactions.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

60 Consensus for Data Replication

Promotion. The promotion technique aims to overcome the wasted
overhead incurred when a transaction fails to write to its assigned log
position. For example, a transaction that reads as of log position i

cannot commit if another transaction has already been written to log
position i + 1. In Megastore, such a case leads to the need to restart
the transaction which would require processing the transaction again,
leading to wasted overhead. The promotion technique allows a client to
explore whether it is possible to reuse the processing that is already done
instead of redoing it. Specifically, the client observes the transaction
that was written in the log position it wanted to write to, e.g., log
position i + 1 in the example. If there are no conflicts between the
transaction and what is written in i + 1, then the client promotes the
transaction to the next log position (i + 2) and attempts to write the
commit record to it. In this case, there is no need to reprocess the
transaction since the transaction in log position i + 1 does not conflict
with it. This is because the transaction in i + 1 did not change any
of the data objects that were read by the client’s transactions, whcih
means that the view of the database as of log position i + 1 is identical
to the view as of log position i from the perspective of the transaction
that is now committed in log position i + 2.

Atomic Broadcast for SMR

The use of atomic broadcast solutions—which are closely related to
consensus solutions—have also been used to implement SMR systems [7],
[24], [86], [133], [134], [145]. Atomic broadcast offers reliability, atomicity,
and ordering properties. These can be used to implement a SMR system
by utilizing atomic broadcast to order messages. Then, this message
order will be used as the SMR log order.

5.2.3 Consensus to Manage Access to Shared State

One of the common uses of consensus is to coordinate access to shared
resources and distributed state. A distributed system needs to maintain
configuration information that allows different agents to learn about the
distributed systems and the other nodes. This configuration information
is a form of a shared/distributed state. Given the critical nature of

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5.2. Consensus for Data Replication 61

such distributed state, it is desirable to maintain this information in
a reliable way. Using consensus protocols help in providing a reliable
mechanism to maintain shared and distributed state.

A common use case for such services is to elect a leader for a certain
task. For example, consider a distributed processing system where each
task must not be processed by more than one agent. A consensus
protocol to coordinate access can be used to assign the task to one
agent ensuring that no other agent will attempt to process that event.
In this section, we present an example of consensus-based systems to
manage shared state and discuss its use cases.

Google Chubby [31] is a lock service that aims to coordinate access
to shared state in a distributed system. It is a Google service that
has been used internally in multiple systems. For example, the Google
File System (GFS) [52] uses Chubby to elect a leader for the cluster.
BigTable [37] uses Chubby to allow a leader to track the servers it
controls.

The interface provided by Chubby is similar to a filesystem with
the addition of advisory locks. To coordinate shared state, an agent
creates a file that represents the state it wants to coordinate. All agents
wanting to perform an operation related to the shared state would have
to coordinate through the designated file. To facilitate this coordination,
reading and writing to the file and advisory locks are used where there
are write (exclusive) locks and read (shared) locks. If an agent acquired
an exclusive lock, no other agent can acquire the same lock. However,
shared locks can be held concurrently.

Consider a system that aims to maintain meta-information about a
database that is sharded. The meta-information should enable a client
to know the scope and location of data shards. A filesystem interface of
the lock service may abstract this information by creating a directory
/ls/database-shards/shards/ and a file for each shard inside the directory.
Shard i is in file /ls/database-shards/shards/i and consists of the shard’s
information such as data that is maintained in the shard and the location
of the agents that store the shard and process its corresponding requests.
When a client wishes to access a shard it acquires a shared lock during
the operation. To reconfigure shards, an exclusive lock is used to modify
the content of relevant files in the duration of the reconfiguration process.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

62 Consensus for Data Replication

This locking strategy prevents the case of a reconfiguration while a
client is sending requests to agents that are being reconfigured.

Reliability and high-availability of the lock service is one of the main
features of the Google Chubby lock service. If the meta-information
is maintained in an agent that undergoes a failure, then this would
influence all the systems that are managed by it. Making the lock service
reliable is important for the reliability of all the services managed by it.

To achieve reliability, paxos is used to replicate the state of the
lock service to a cluster of agents. Using paxos ensures that a failure is
tolerated transparently by electing a new leader. Such a cluster is called
a Chubby cell that consists of a number of agents, typically five agents.
One of the agents in the Chubby cell is elected to be a leader using
the leader election mechanisms of paxos. The state maintained is that
of a database that is replicated across agents in a Chubby cell. Read
and write requests are sent to the leader to be served. A read request is
served by the leader without further coordination if the leader has an
unexpired read lease. A write request is first replicated from the leader
to a majority of agents in the Chubby cell before a response is sent to
the client. This replication step is performed by the replication round
of paxos.

Other lock services implement the same mechanisms of using paxos-
based protocols to achieve reliable state maintenance. This includes
Apache ZooKeeper [83], which is an open-source solution that has been
used widely in different services. ZooKeeper shared with Chubby various
characteristics such as the use of an agreement protocol to guarantee
consistency and the use of a filesystem-like format. One distinguishing
feature of ZooKeeper is its support for wait-free data objects. This
overcomes the challenges of blocking primitives such as locks.

5.2.4 Consensus in Replicating Participants of Distributed Systems

The use of consensus to maintain replicated state is not only used when
replicating the whole application. In many cases, consensus protocols are
used to replicate a subset of a larger distributed protocol. An example
of this is distributed commit protocols. Instead of replicating the state
of the whole distributed commit protocol, an alternative approach is

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5.3. Consensus in Geo-Distributed Systems 63

to replicate the state of each participant. In such a case, the failure of
an agent is tolerated because each participant’s state is maintained by
a cluster of agents. We have discussed this approach in more detail in
Section 4.2.3.

5.3 Consensus in Geo-Distributed Systems

One of the main areas of research that utilizes consensus for data
replication is the area of geo-distributed systems. A geo-distributed
system is a system where data is distributed across geographically
distant locations. Typically, data is distributed across multiple data
centers. Separating the different pieces of data are wide-area links that
incur latencies from 10s to 100s of milliseconds. For ease of exposition,
we focus on fully-georeplicated systems across data centers, where each
data center maintains a full copy of the data.

The main motivation for geo-replication is to tolerate data center-
scale outages [60]. To this end, using a consensus protocol for replication
ensures that the outage of a data center can be tolerated by resuming
operation using the copies at the other data centers. What distinguishes
the problem of geo-replication from regular intra-data center replica-
tion is the wide-area latency that separates replication agents. This
makes coordination expensive in terms of latency. The evolution of
geo-replicated systems started with flat geo-replicated systems that
mimic the pattern of regular replication systems. Then, to overcome
the high latency, various methods were performed to reduce the number
of needed communication rounds. Finally, methods that utilize locality
and hierarchy are proposed to avoid large wide-area latency. In the rest
of this section, we overview these approaches.

5.3.1 Flat Geo-Replication

Flat geo-replication represents the first wave of geo-replicated systems
that mimic the communication patterns of regular replication systems.
In these systems, agents are treated equally regardless of their location.
An example of this approach is Megastore [17] that we introduced
in Section 5.2.2. Flat geo-replication has the advantage that existing

The version of record is available at: http://dx.doi.org/10.1561/1900000075

64 Consensus for Data Replication

replication mechanisms that were utilized within the data center can
be extended with relatively less effort to geo-replication. This led to
the adoption of this replication strategy by systems that focus on
other aspects of data management. Calvin [147], for example, is a
deterministic transaction processing layer that extends the use of paxos
to geo-replicate the state of the data management system.

To reduce the wide-area latency cost, flat geo-replication systems
employ multi-paxos to avoid the leader election phase latency. They
also utilize leader and read leases to enable responding to read requests
without coordination with other data centers.

Placement for Flat Geo-Replication

Placement is an important aspect of practical deployment of geo-
replicated systems that controls a trade-off between performance and
the level of fault-tolerance. Placing data copies across nearby data cen-
ters improves performance but may still be susceptible to data center
outages impacting multiple data centers such as outages due to nat-
ural disasters. Placing copies across faraway data centers would lead
to higher latency but reduces the possibility of multiple data center
outages1.

Additionally, the placement of copies across data centers influences
the latency based on the dynamics of the protocol. For example, a paxos
protocol’s performance would be influenced by the latency to the closest
majority of data centers. A distributed commit protocol’s performance
would be influenced by the latency to get to the participants of a
transaction being committed.

Solutions to aid in placement of data copies across data centers have
been proposed [1], [2], [140], [156]. SpanStore [156] is a placement system
that decides where to place copies of data of a key-value store to improve
performance and monetary costs savings. It utilizes information about
the wide-area latency between data centers, and the costs of storage,
processing, and network bandwidth. SpanStore uses an optimization

1Note that there are types of outages that can impact multiple data centers
regardless of where they are placed. These are outages that are due to configuration
and software errors that can propagate from one data center to another [60].

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5.3. Consensus in Geo-Distributed Systems 65

formulation that takes all the input information about the system model,
system environment, and workload to produce a placement strategy to
maximize the performance and monetary costs objectives while staying
within the limits set by the application.

Take me to your leader! [140] is a placement system that considers
a strongly consistent transactional system similar to the distributed
atomic commit protocols we discussed in Section 4. The database is
sharded and each shard is replicated independently. The replication of
a shard is performed through the leader of that shard. The goal of this
work is to optimize the following aspects of the geo-replicated system:
(1) Leader placement: this aspect decides the location of the leader
to maximize performance of database operations. The optimizer can
choose any replica to become a leader. This optimization considers the
locations of clients, their workloads, and the performance of serving
their requests. (2) Leader and replica roles: this optimization decides
what agents to assign as voter nodes that participate in the replication
protocol (e.g., acceptors in a paxos protocol) and what agents to assign
as read-only nodes that would only receive updates and make them
available for read operations. This is needed in cases when it is desired
to maintain additional agents for read-only operations in addition to
the main agents used for replication and voting. (3) Replica locations:
this optimization decides what agents to choose out of the pool of
all available agents to participate in the protocol either as voter or
read-only nodes.

GPlacer [159], [160] is a placement and configuration system that
targets multi-data center scenarios. Specifically, GPlacer models the
problem of placement as deciding the placement of n replicas across
all available data centers. To make this decision, GPlacer considers the
topology of the data centers and the wide-area latency between them
to estimate the average latency of transactions. For each placement
scenario, the average latency can be calculated using the anticipated
workload characteristics and origin. For example, for a certain placement,
the latency of transactions—whether read-write or read-only—can be
estimated for each data center. If this estimation of average transaction
latency is performed for all possible scenarios, then it is possible to pick
the best placement strategy by choosing the scenario that yields the

The version of record is available at: http://dx.doi.org/10.1561/1900000075

66 Consensus for Data Replication

best average latency. The space of placements can be large, and for
this reason, GPlacer utilizes an optimization framework to reach the
decision of the best placement faster.

Reduced Communication Complexity for Flat Geo-Replication

An area of work to reduce the performance overhead of flat geo-
replication aims to find ways that would reduce the number of com-
munication rounds beyond what multi-paxos can achieve. There are
three main communication overheads that influence the performance
of geo-replication systems: (1) The overhead to elect a leader. This
overhead can be reduced with the use of multi-paxos as we discussed
in Section 2.2.1. (2) The overhead to replicate a c-value. This is the
overhead that corresponds to the replication phase of paxos. So far, this
overhead corresponded to the latency needed to reach a majority of
agents from the leader. (3) The communication overhead of client-leader
communication. This overhead is not part of the consensus process
itself. However, it is still experienced by the client. This latency can be
non-trivial in geo-replication systems. For example, if the leader is in
Asia and the user is in the Americas, the wide-area latency between
the two continents adds to the client’s end-to-end latency both for
transmitting the request to the leader as well as receiving the final
response from the leader. Note that this overhead is incurred even if
there is an agent (e.g., paxos acceptor) that is closer to the client. This
is because all requests need to go through the leader.

Protocols in this category aim to manage the trade-offs and design
choices of the above three sources of overheads. One approach is to
utilize a leaderless consensus protocol instead of a leader-based protocol.
Variants such as Fast Paxos [101] can be used to allow a client to commit
a c-value by sending them directly to acceptors. At a high level, Fast
Paxos operates by making clients send a special propose message to
acceptors. When a quorum of acceptors accepts the proposal, then it
is considered committed. There are some caveats for this approach to
work. The client needs a super majority to form a quorum, instead of
a simple majority. Specifically, in Fast Paxos, there are two types of
quorums. A fast quorum that is used to commit c-values from clients to

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5.3. Consensus in Geo-Distributed Systems 67

acceptors directly without a leader, and a classical quorum that is used
if a conflict occurred when using a fast quorum. The condition on the
fast and classical quorum is the following: any two fast quorums and a
classical quorums must intersect in one acceptor. With 5 acceptors, a
possible configuration sets the size of the fast quorum to be 4 acceptors
and the size of the classical quorum to be 3 acceptors. Any two fast
quorums and a classical quorum intersect in at least one acceptor. In
the best case, the client can commit a c-value with one round to the
super majority (using a fast quorum). However, it is possible that if
two clients tried to commit c-values concurrently that neither would
collect enough votes, in which case the protocol falls back to using a
classical quorum which leads to additional overhead.

The advantage of leaderless protocols in wide-area settings can be
significant. The latency of collecting additional votes to form a fast
quorum can be much faster than the additional latency needed to
funnel requests through a potentially distant leader. For this reason,
geo-replication solutions explored the use of such protocols. Multi-Data
Center Consistency (MDCC) [95] is a protocol that explores the use
of Fast Paxos in geo-replication. Clients in MDCC commit database
transactions by replicating them to acceptors using Fast Paxos. They
observe that a high conflict rate leads to repeated fallback to classical
paxos. Not only is the benefit of Fast Paxos not observed in such a case,
there is extra overhead for conflict detection and fallback to classical
paxos which means that the performance becomes significantly worse
than running a typical multi-paxos protocol.

To overcome the challenges stemming from workload with high con-
flict rates when using fast paxos, MDCC exploits cases when operations
are commutative to avoid conflicts [118]. Commutative operations are
operations that can be reordered without impacting the final outcome
of applying the operations. In another way, commutative operations
ensure that they do not conflict even if they touch the same data
objects. For example, incrementing an integer is a commutative op-
erations, since two increments can be reordered without invalidating
their computation even if they operate on the same variable. MDCC
allows committing commutative operations even if they are applied
concurrently by utilizing Generalized Paxos [100]. In Generalized Paxos,

The version of record is available at: http://dx.doi.org/10.1561/1900000075

68 Consensus for Data Replication

c-values are committed in a similar way to Fast Paxos. However, instead
of requiring that acceptors agree on the order of committed c-values,
it allows an acceptor to accept c-values in any order as long as the
operations in the c-values are compatible. Compatibility can be defined
by the application of Generalized Paxos. MDCC utilizes the notion of
compatible operations to support committing commutative operations
concurrently. Therefore, MDCC allows committing c-values using fast
quorums while avoiding conflicts by using commutative operations.

Leaderless protocols based on paxos have been proposed to optimize
the size of the fast quorum further. Egalitarian Paxos (EPaxos) [122]
is a leaderless protocol that reduces the size of the fast quorum to
be f + ⌊f+1

2 ⌋ out of 2f + 1 total nodes. The novel design that allows
EPaxos to achieve such small quorum sizes is that acceptors respond with
dependency information of requests they receive. This allows tracking
dependency information by clients which enables resolving conflicts by
ordering them when possible. When an order cannot be guaranteed—
because multiple nodes responded with different orderings—EPaxos
falls to the normal path.

Mencius [116] aims to avoid the client-to-leader overhead by dis-
tributing the leadership of SMR log entries across participants. Instead
of one agent becoming the leader of all future log entries—as is typi-
cal in multi-paxos—the leadership of log entries can be assigned in a
round-robin fashion, i.e., agent a is the leader for log entry 0, agent b
is the leader for log entry 1, and so on. The benefit of this approach is
that a client can send its request to the closest participant to be added
to the next available log position where it is a leader. Another benefit
of this round-robin assignment of leadership is load balancing.

Leader or majority [13] explores the aspect of mitigating the need
to go through the leader for read operations. In a regular RAFT or
multi-paxos deployment, the leader with a read lease is the only node
that can provide a consistent read. In this work, the authors propose
using quorum reads that may bypass the leader when sending read-only
requests. This approach leads to better read performance if the round-
trip time from the client to a majority of participants is faster than the
round-trip time to the leader.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5.3. Consensus in Geo-Distributed Systems 69

Weighted Replication

Weighted replication [50], [53] is a method of replication that assigns
a weight for the vote of each agent. The higher the weight, the higher
the influence of the vote. This approach has benefits in geo-replication
where an agent can be assigned a weight that corresponds with certain
properties such as their priority, distance from others, and level of
resilience. Sousa and Bessani [143] explored the use of weighted replica-
tion techniques in the context of geo-distributed systems. In particular,
their weighing technique allows the utilization of quorums with varying
sizes. This flexibility in quorum sizes enables having quorums that are
smaller in size and/or separated with shorter wide-area links. These
properties improves performance by reducing the latency necessary for
coordination.

5.3.2 Hierarchical and Locality-Aware Geo-Replication

This approach for geo-replication redesigns the consensus protocol to
leverage the locality of data access. Agents that are spread around
the world are grouped into subgroups that coordinate with each other
locally. For operations that span multiple groups, coordination between
subgroups is performed. This is a hierarchical coordination pattern that
enables fast local operations while providing methods for global coordi-
nation. It turns out that Flexible Paxos [82] provides the theoretical
foundation that allows such hierarchical coordination to be performed.
Next are protocols that build on Flexible Paxos to build a hierarchical
consensus protocol for geo-replication.

Dynamic Paxos

The system model of Dynamic Paxos (DPaxos) [126] consists of sub-
groups of agents around the world. Each subgroup represents a unit in
the hierarchy. DPaxos utilizes Flexible Paxos by assigning quorums in
the following way: (1) Replication quorums: any majority of nodes in
a subgroup is a replication quorum. (2) Leader election quorums: any
group of nodes that intersect with all replication quorums. This quorum
assignment allows a majority of nodes in the subgroup to commit to the

The version of record is available at: http://dx.doi.org/10.1561/1900000075

70 Consensus for Data Replication

SMR log, which means that they avoid wide-area latency in replication
rounds—which are the most frequent. This enables a partition of data
to operate closest to its users without incurring wide-area latency. If
a partition moves to another location, then a leader election round
is performed that would span all subgroups. Although the latency of
leader election is high, its cost is amortized by using multi-paxos.

DPaxos allows assigning quorums in a way that allows tolerating
subgroup failures where all—or a majority of—nodes in a subgroup
experience a failure. This models outages that would impact a geograph-
ical location that span agents in a subgroup. This type of outage would
halt DPaxos as described above because Leader Election cannot be per-
formed as it has to span all subgroups. To tolerate such outages, DPaxos
modifies the assignment of a replication quorum to be a majority in
any two subgroups. A leader election quorum is any set of nodes that
intersect with all replication quorums. Because each replication quorum
must span two subgroups, the leader election quorum can be formed
even with the failure of all nodes in a subgroup. This method can be
extended to a larger number of subgroup failures (fg) by ensuring that
the replication quorum spans at least fg + 1 subgroups.

DPaxos proposes an extension to Flexible Paxos called expanding
quorums. The problem that expanding quorums aims to solve is the
size of the leader election quorum. With Flexible Paxos, the leader
election quorum must intersect all replication quorums, which means
that it needs to span most—if not all—subgroups based on the level of
subgroup outage tolerance. To make the size of leader election quorums
smaller, DPaxos makes the observation that leader election quorums
do not need to intersect all replication quorums all the time. Rather,
they only need to intersect replication quorums that were previously
active, i.e., where acceptors in the replication quorum have received
a propose messages. This is because a leader election quorum aims to
invalidate prior ballot numbers and learn of previous accepted values.
If a replication quorum did not participate in a replication round, this
means that there is no need to intersect it in the leader election quorum.

With this observation, DPaxos leader election quorum only needs to
ensure intersecting with active replication quorums. Expanding quorums
allow a way to find the location of active replication quorums. First,

The version of record is available at: http://dx.doi.org/10.1561/1900000075

5.3. Consensus in Geo-Distributed Systems 71

leader election quorums are assigned to be intersection with each other
(note that this is a condition to make leader election quorums intersect
with each other which is different from the condition of flexible paxos
where a leader election quorum must intersect with all replication
quorums.) With this condition, a leader election quorum can be assigned
to be any majority of nodes in a majority of subgroups instead of having
to span all or most subgroups. These intersected leader election quorums
will be used to record what replication quorums are intended to be
used by a proposer. A proposer piggybacks the subgroup it intends to
use in the prepare message. The acceptor records the intent of every
prepare message it acknowledges. Then, the acceptor piggybacks all
previous intents that it has received in the prepare-ack message. This
means that the proposer, after the leader election round, knows all
the replication quorums that were intended to be used (this is because
any two leader election quorums intersect.) The proposer then makes a
decision to expand the leader election quorum if it turns out that there
is an active replication quorum that it did not intersect with. The rest
of the protocol proceeds in the same way as paxos.

WPaxos

WPaxos [8] is a protocol that aims to utilize Flexible Paxos in geo-
replication by grouping nodes into local zones and assigning replication
quorums to be within zones. WPaxos proposes the concept of object
stealing to manage multiple data shards across zones. Each WPaxos
instance manages one data shard. Occasionally, a data object in a shard
needs to be migrated to another shard, e.g., for load balancing or because
the geographic location of the associated used changed. WPaxos utilizes
the leader election phase to change the ownership of a data object (or
group of data object) from one leader to another—migrating it from one
shard to another. Object stealing demonstrates a more practical method
for migrating data ownership that avoids the overheads incurred in
prior solutions. This is because the ownership change is integrated with
the consensus protocol itself, rather than needing to perform external
coordination and management to change data ownership.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6
Consensus for Blockchain

To broaden the reach of distributed commit protocols, such as Paxos,
we move beyond the limits of the crash-tolerant setting. Such transition
is necessary for the practical deployment of consensus protocols in
an environment where arbitrary faults may arise. This is primarily to
facilitate the emergence of distributed and decentralized applications
made possible through blockchain systems.1 We begin by formalizing the
failure models and refining our notion of consensus. We offer a unique
unified representation for expressing a wide range of consensus protocols.
Most importantly, we aim to present insights into the design of seminal
consensus protocols such as Pbft [33]. We offer a fresh perspective on
how to navigate and examine the consensus landscape while presenting
sufficient insight to reason and differentiate among them. Ultimately,
we aim to simplify and make the design of these rather complex and
intricate protocols accessible to a wide range of audiences, a stepping
stone to further advancement of this field.

1We begin by focusing primarily on the permissioned blockchain setting that
relies on the notion of identity to register votes to partake in an election in order to
reach consensus, referred to as a closed membership. We conclude by shifting focus
to permissionless blockchains that support open membership and do not assume the
existence of identity (cf. Section 6.5).

72

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.1. Consensus and Failure Model 73

We study Pbft as the necessary foundation before exploring specu-
lative, optimistic, and concurrent consensus designs. We further examine
the basic mechanism to partially linearize communication patterns in
consensus. We conclude by examining the topology of consensus in
the context of cross-shard and cross-chain designs. This coverage is
visualized in Figure 6.1.

Partial Replication: ByShard, RingBFT, Ahl, Cerberus, SharPer

Full Replication: GeoBFT

Cluster Sending Primitive

Concurrent Consensus: Rcc

PoE

Specualtive

Zyzzyva, Sbft

Optimistic

HotStuff

Linear

Consensus Foundation: Pbft

Checkpoint Commitment Recovery

Figure 6.1: A schematic hierarchy of the key concepts to present the foundation
of consensus anchored in Pbft, consisting of commitment, recovery, and checkpoint
sub-protocols. The consensus landscape is explored through the lens of (1) speculation,
which delegates the commitment task to the checkpoint routine, (2) optimism, which
attempts to reduce commitment path, (3) partial consensus linearization, which
continuously invokes recovery after every commitment. The next tier is focused on
concurrent consensus, which runs multiple instances of consensus in parallel. The
final tier is focused on the topology of consensus through clustered design that gives
rise to both full and partial replication schemes.

6.1 Consensus and Failure Model

Consensus, which lies at the heart of blockchain systems, can simply
be viewed as an election among a set of agents (i.e., replicas), where in
each round of a successful election, the majority of replicas vote to agree

The version of record is available at: http://dx.doi.org/10.1561/1900000075

74 Consensus for Blockchain

upon a value such as a contract or transaction. To study the problem
of consensus in a general setting, which we refer to as fault-tolerant
consensus, we extend our failure model (cf. 2.1) to allow arbitrary faults
of replicas, also known as malicious or Byzantine behavior.2 In our
setting, the faulty behavior of a replica may include both (1) omission,
e.g., fail-stop or message loss, and (2) commission, e.g., the equivocation
of intent. We begin by first formally describing our setting.

System Model: We model a system as a set R of replicas that process
requests3 from a set of clients. We assign each replica r ∈ R a unique
identifier id(r) with 0 ≤ id(r) < |R|.4 We write F ⊆ R to denote
the set of faulty replicas that can behave in arbitrary ways, possibly
coordinated and malicious. We assume that non-faulty replicas behave
in accordance to the protocols they are prescribed. Most consensus
protocols do not make any assumptions on the clients behavior: all
clients can be malicious without affecting the system. We write n = |R|,
f = |F|, and g = n − f to denote the number of replicas, faulty replicas,
and non-faulty replicas, respectively. We assume that n > 3f and g > 2f .
We further assume that any valid quorum of replicas is of size g > 2f ,
which is also referred to as the majority of replicas.

Given a system of R replicas, a single run or a single round of any
consensus protocol, as conceptualized in Figure 6.2, should satisfy the
following properties:

Definition 6.1. (Primary Consensus Properties)

• Non-divergence (Safety): In each round of consensus, only one
value is decided by all non-faulty replicas.

2We intentionally aim to refrain from the commonly accepted terminology of
Byzantine behavior, which carries a negative connotation that categorically, perhaps
unintentionally, that demeans an entire civilization that lasted a millennium. Let
this be a genuine call to re-consider terminology in computer science by examining
its negative connotation and lasting unintended harm. Other examples include the
replication model of master-slave, operating system concepts such as kill a process
or preemptive scheduling, database concurrency control primitives such as wait-die
and wound-wait, to name a few, all eliciting negative emotions.

3We use the term client’s request, proposal, or transaction interchangeably.
4The existence of identity—and possibly a trusted authority to issue it—is an

essential assumption which implies the existence of voting rights to partake in an
election. However, having voting rights does not preclude faulty behaviors.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.1. Consensus and Failure Model 75

• Termination (Liveness): Each non-faulty replica must eventually
decide a value.

The safety property is concerned with reaching a correct outcome so
that nothing bad ever happens while the liveness property ensures that
something good eventually happens, and there is an outcome. A protocol
can be trivially safe if it produces no outcome when no value is ever
decided upon, but, of course, such a protocol has no practical value. We
further introduce additional consensus properties to ensure every round
of agreement is not arbitrary. We expect there is an interested party
(i.e., client) for each decided value (i.e., validity), who will eventually
be informed (i.e., response), and that every client will eventually have
the opportunity to propose (i.e., service). We assume that all requests
are digitally signed by clients and tamper-proof as such. We further
assume that the communication among replicas is authenticated such
that a faulty replica cannot impersonate a non-faulty one.

Definition 6.2. (Secondary Consensus Properties)

• Validity: Any decided value must have been proposed by a client.

• Response: The client of the decided value will eventually be
informed.

• Service: A well-behaving client will eventually be able to propose
a deciding value.

r4

r3

r2

r1

Consensus

v

v

v

⊥

Figure 6.2: A schematic representation of consensus among four replicas (3f + 1)
tolerating f faults in which r1 is faulty and is marked as red. Upon completion of
consensus all non-faulty replicas agree on a common value.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

76 Consensus for Blockchain

6.2 Consensus Foundation

As a prerequisite to understanding the general problem of consensus, we
explore in-depth the seminal fault-tolerant consensus protocol known
as Pbft (Practical Byzantine Fault Tolerance) that consists of three
main sub-protocols [33], [34].

• A Commitment Protocol that enables a well-behaving leader to
reach an agreement among the majority of replicas, forming a
commitment quorum, on a client’s proposal via two phases of
all-to-all communication (cf. 6.2.2).

• A Recovery Protocol that replaces the faulty-leader with the sup-
port of the majority of replicas, forming a recovery quorum, to
preserve any committed proposals and restore liveness via view
change and new view phases (cf. 6.2.3).5

• A Checkpoint Protocol that restores replicas in dark with the
support of the majority, forming a checkpoint quorum, without
relying on a leader to reach a decentralized commitment via
checkpoint phase (cf. 6.2.4).

Consensus operates in rounds, and in each round a new value based
on the client’s proposal may be proposed and committed by the leader
via the commitment protocol. Any replica may eventually assume the
role of leader. Since consensus is driven by a leader, intuitively, the
entire system can be seen through the lens of the leader, namely, the
leader’s view. Thus, every leader represents a view. Each newly elected
leader presents a new view of the system. Similarly, change of leader
implies change of view. When commitment stalls the view is changed
via the recovery protocol, but when replicas are left uninformed of the
commitment, the view may be restored via the checkpoint protocol.

5In Section 6.2.3, we further demonstrate that the commitment and recovery paths
are almost identical. In commitment, the agreement is reached on the client’s proposal
whereas, in recovery, the agreement is reached on replicas’ prepared proposals.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.2. Consensus Foundation 77

6.2.1 Preliminary: Crash to Fault Tolerant Transition

To transition from a crash-tolerant to fault-tolerant setting, we first
simplify the standard terminology used to describe Paxos earlier. We
adopt the primary-backup model consisting of a system of R replicas
of size n > 2f that receive client requests. A replica is elected as the
leader, also referred to as the primary or coordinator, akin to classical
database agreement protocols such as 2pc and 3pc [141]. We no longer
differentiate among roles such as acceptor and learner, and we assume
that every replica accepts and learns every decided value.

The basic idea of crash-tolerant consensus protocols such as Paxos
is that when a value is proposed (via Propose) by an elected leader,
then the agreement is reached as soon as the proposed value is endorsed
by the majority of replicas (via Commit), a reminiscent of two-phase
commit protocol, which we refer to as the commitment protocol in
consensus. These endorsements guarantee that the proposed value is
sufficiently propagated in the system, which ensures there is sufficient
redundancy to preserve the decided value as long as the majority of
replicas are non-faulty. Since the leader is trusted in disseminating the
proposal and collecting the votes correctly, the leader is guaranteed
to make progress as long as the communication is reliable and the
majority of replicas including the leader have not crashed, referred to as
a commitment quorum. Thus, there is no need for redundant all-to-all
communication among replicas to ensure the leader behaves well and
proposes the same value to all. Unless a quorum is constructed, namely,
the majority are in agreement, no progress is ever made; hence, liveness
is lost, yet safety is assured.

Paxos’s recovery protocol for leader replacement resembles propos-
ing a value. Any replica may trigger a new election via ViewChange
message, adopting Pbft style terminology. If the replica is endorsed
by the majority via NewView, then the replica is elected as the leader.6
When a replica observes no progress, it often calls for an election to

6In Paxos terminology, the ViewChange and NewView phases are referred to as
prepare and prepare-ack, respectively.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

78 Consensus for Blockchain

replace the suspected crashed leader to restore liveness.7 Each replica
will independently maintain a local timer to measure the period of no
progress in order to decide when a new election is justified. Overall,
Paxos can be dismantled into sub-protocols of commitment and leader
replacement. The flow of Paxos is depicted in Figure 6.3a.

Leader Replacement Commitment

r2

r1

p
c

τ

Execute τ

Execute τ

1 Vote

ViewChange NewView Propose Commit Inform

(a) Paxos Protocol

Leader Replacement Commitment

r3

r2

r1

p
c

τ

Execute τ

f + 1 Votes

ViewChange NewView Propose Prepare Commit Inform

(b) Pbft Protocol

Figure 6.3: (a) A schematic representation of Paxos protocol in a setting with
n > 2f replicas, in which a new primary p is elected via ViewChange and NewView
before proposing client’s transaction τ to all replicas via a Propose message. Replicas
commit to τ via a one-phase of all-to-one message exchange. (b) A schematic
representation of Pbft protocol in a setting with n > 3f replicas, in which a new
primary p is elected via ViewChange and NewView before proposing client’s transaction
τ to all replicas via a Propose message. Replicas commit to τ via two phases of
all-to-all communication, referred to as the commitment protocol. The flow of the
leader replacement protocol is simplified to capture the overall concept.

7In general, a replica cannot distinguish between an unreliable network and
crashed leader, and in both cases, it will blame the leader and trigger an election.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.2. Consensus Foundation 79

In contrast, in the fault-tolerant setting, we transition to a system of
R replicas of size n > 3f that can handle arbitrary failures. Intuitively,
increasing the size of R from n > 2f to n > 3f lies in the fact that
f replicas may behave arbitrarily. Suppose that in the crash-tolerant
setting f +1 votes are needed to preserve any decision. Thus, to maintain
the same guarantee in the fault-tolerant setting, at least 2f + 1 votes are
required because endorsements from up to f replicas may be unreliable
and revoked arbitrarily [68].

6.2.2 Commitment Protocol: Leader-based Agreement

To dissect the fault-tolerant consensus, we turn to Pbft. The start of
Pbft’s commitment protocol is traced to when a leader proposes a
value (via Propose)8 followed by replicas redundantly exchanging the
received value (via Prepare) as an oversight to ensure that the leader
is behaving as expected. Unlike Paxos, each replica will independently
count endorsements without relying on the leader. Once a replica es-
tablishes that the majority has received the same proposed value from
the leader, the replica enters the prepared state by forming a prepared
quorum9—i.e., establishing the integrity of the proposal ensuring no
equivocation by the leader. Considering that each replica independently
arrives at the prepared state, a prepared replica is unable to infer whether
other replicas have also prepared or not, and it is possible that only
one non-faulty replica reaches the prepared state due to message loss
and unreliable network.

Thus, a prepared replica must exchange its commitment to the
proposed value (via Commit) with all replicas. Once a replica receives
commitment from a majority of replicas, forming a commit quorum, it
can infer that a majority of non-faulty replicas have prepared, and an
agreement is reached—i.e., establishing the preservation of the proposal

8In the original Pbft paper, the propose phase is referred to as pre-prepare.
9In Paxos, as soon as a replica receives a proposal from the leader, it transitions

to the prepared state as it can be certain that no other replicas would be receiving a
conflicting proposal from the same leader, eliminating the need to form prepared
quorum.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

80 Consensus for Blockchain

across views.10 As long as a single non-faulty replica reaches the com-
mitted state, it is guaranteed that the committed value will always be
recoverable (i.e., preserved) because there will always be at least one
non-faulty prepared replica in every possible quorum. On the contrary, if
a non-faulty replica assumes consensus after reaching the prepared state
and informs the client,11 then the preservation of the promise to the
client is not guaranteed. Because shortly after, the recovery procedure
may be triggered, and it is possible that the recovery quorum does
not include the only non-faulty replica that was prepared; thus, the
commitment to the client could be overwritten. The flow of Pbft is
captured in Figure 6.3b.

A closer look at Pbft reveals that only the proposal phase is leader-
based while the remaining phases are, in fact, leader-less, exhibiting
a decentralized agreement and convergence. We can conceptualize the
commitment protocol consisting of two main stages, (1) proposing a value
and (2) agreeing upon the proposed values. Having the proposal stage
driven by a leader substantially simplifies the design of the consensus
protocol, mimicking a centralized behavior by allowing a single replica
to choose the next proposal. The agreement stage can be carried out
in a decentralized manner in which all replicas directly exchange their
endorsements with everyone.

More formally, the notion of the agreement itself is defined by the
formation of a quorum, that is 2f + 1 replicas endorsing the same value
out of 3f +1 replicas. Alternatively, the size of the quorum can be defined
as the number of non-faulty replicas. The importance of quorum lies in
the set-intersection property to prove that all possible pairs of quorums
are overlapping, and the overlap contains at least one non-faulty replica.
Therefore, through this common non-faulty replica, it is guaranteed that
any two possible quorums will never reach conflicting decisions because

10Theoretically, the completion of consensus is established only when all non-faulty
replicas (not just the majority) have committed to the proposed value. Ensuring all
non-faulty replicas are up-to-date can be achieved through a decentralized checkpoint
process that does not rely on the leader.

11It is important to note that in Pbft, it is sufficient to have a single non-faulty
replica informing the client about the commitment, which is the same as in Paxos.
Even though in Pbft, the client expects f + 1 endorsements, f of which may be
attributed to faulty replicas who may revoke their support subsequently.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.2. Consensus Foundation 81

no non-faulty replica will ever endorse conflicting proposals. For the
formal analysis of Pbft and its correctness proof, we refer interested
readers to [64].

What is of crucial importance in the design of Pbft is that progress
is made (i.e., liveness) only when a quorum is established. By con-
struction, any progress made upon the formation of a quorum is always
correct because all possible quorums overlap through a non-faulty replica
that prevents divergence (i.e., safety).

6.2.3 Recovery Protocol: Leader Replacement

But what if no commitment quorum is established to ensure progress?
This is the central question that must be tackled in the recovery mech-
anism of any consensus protocol. But first, the lack of progress itself
must be detected reliably, which in itself requires the formation of
what we refer to as the recovery quorum. Thus, it becomes evident that
consensus protocol, such as Pbft and all of its derivatives, will stall
indefinitely unless a quorum is formed; said differently, no step is ever
taken in Pbft unless there is a quorum that endorses this step. This
fundamental principle that necessitates the support of a quorum holds
true for both commitment and recovery flow of Pbft.

Therefore, if for any reason a replica in Pbft detects a lack of
progress independently through its local timer or detects malicious
behavior of the primary,12 it will aim to replace the leader, i.e., changing
the view. Note that a view change does not imply faulty primary
behavior nor precludes it, as network unreliability may also impede
progress. This leads to an indistinguishability dilemma such that lack of
progress may be due to the network failing to deliver the message or the
primary failing to send the message. But in either case, the protocol finds
a resolute in replacing the leader indefinitely until both the network and
primary are sufficiently well-behaving such that a quorum can be formed.

The recovery routine consists of three main stages. First, the de-
tection is triggered independently via ViewChange phase, which needs
the support of the majority to form a well-formed recovery quorum
before proceeding any further. Second, the recovery quorum must agree

12A faulty primary may propose two different values in the same round.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

82 Consensus for Blockchain

upon who the next leader is; this is a subtle yet critical synchronization
step, which is arguably the most vital and overlooked mechanism of
Pbft protocol. This synchronization must tolerate and recover from
repeated arbitrary failures during the recovery itself. Third, the new
view must be established based on the information provided by all
non-faulty replicas as part of the ViewChange message, which includes
all proposals proposed and prepared for every round since the last stable
checkpoint (cf. 6.2.4). The new view is delivered via NewView message
to all replicas. Considering the ViewChange messages were exchanged
among all replicas,13 all replicas can independently verify the validity of
the new view proposed by the new leader. The flow of the view change
protocol is illustrated in Figure 6.4.

Log LogViewChange Time
Synch

NewView
(Preserve)

r3

r2

r1

p

1 3 5 7 9 11 13 15 17
Time −→

[τφ,⊥, τϕ, τψ] [⊥,⊥,⊥, τ4]

[⊥, τ2,⊥,⊥] [τ1, τ2,⊥, τ4]

[τ1, τ2,⊥,⊥] [τ1, τ2,⊥, τ4]

[⊥, τ2,⊥, τ4] [τ1, τ2,⊥, τ4]

Figure 6.4: Failure Recovery: A schematic representation of the Pbft’s leader
replacement protocol, also referred to as the view change protocol. All replicas
detect the primary p failure and initiate leader replacement via ViewChange message.
Between the time T9 to T13, all replicas observe the recovery quorum formation of {R1,
R2, R3}. At time T13, R1 is elected as the new leader and broadcasts the NewView
message consisting of [τ1, τ2, ⊥, τ4]. Via NewView, all logs are eventually brought
up-to-date through consensus by preserving any probable committed proposals.

Further note that neither the new view nor the recovery quorum is
necessarily unique; therefore, the primary may choose any well-formed
quorum to construct a new view. The main requirement of the new
view is to preserve all committed proposals logged by each replica. For

13A quadratic message complexity is necessary to exchange view change messages
and reach synchronization, which cannot be reduced through threshold signature
employed in a protocol such as [54], [62], [157].

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.2. Consensus Foundation 83

example, suppose a value was proposed in a round but never prepared or
committed. In that case, the primary has the liberty to either preserve
one of the possible uncommitted values or opt out for a no-op (⊥) value
instead. Given a recovery quorum, for every round ρi, if the value τ was
prepared by at least one non-faulty replica—which can be demonstrated
through a prepared certificate digitally signed by a quorum or if there
is a quorum of non-conflicting prepared claims14 within the same view,
where there is at least one non-faulty replica claiming τ was proposed in
the same or later view,—then τ must be preserved in the round ρi of the
new view. But with inadequate prepared support, no-op is assigned to
ρi. After the view is changed, the logs (i.e., ledger) of all participating
non-faulty replicas are brought up-to-date by having the primary to
guarantee the uniqueness of the new view, i.e., ensuring there exists a
quorum that agrees on the same new view. The view change further
serves as the means to recover replicas in dark.

Considering the recovery quorum may not be unique because not
every round has been committed since the last stable checkpoint, then
a malicious primary may not share the same recovery quorum with all
replicas. To guard against such attacks, in Pbft, post view-change,
the new primary must run a consensus on every round ρi since the
last checkpoint for which there is a prepared proposal or no-op in the
new view to ensure that a quorum will observe a unique new view.
Consequently, the new view may be seen as a set of promised proposals,
which primary must propose through consensus to ensure uniqueness
after broadcasting the new view. If a committed certificate exists for any
round ρi in the new view, no additional round of consensus is needed.
For any replica that did not receive a committed certificate for round ρi,
it would expect the primary to propose τ or ⊥ for round ρi. Otherwise,

14In order to construct a non-conflicting quorum, i.e., a well-formed quorum, the
new leader may be forced to wait for all non-faulty replicas to participate. This
further implies that every possible recovery quorum may not be well-formed because
faulty replicas may provide conflicting information (in absence of a certificate) forcing
the leader to stall with a chance of instigating another view change after a single
non-faulty replica times out [64]. Forming a non-conflicting quorum of prepared claim
is only possible if a majority of non-faulty replicas either support or have no objection
to the claim; thus, no other conflicting proposal could have been committed, i.e., a
safe claim.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

84 Consensus for Blockchain

the replica would conclude that the new primary is misbehaving and
would trigger another primary replacement.

Similar to the commitment flow of the protocol, we observe that the
leader replacement of Pbft is only partially leader-based. The detection
mechanism is leader-less, but once the majority agrees upon the new
view, then constructing and propagating the new view is carried out by
the new leader, making the second part leader-based.

We expand our investigation to consider what happens when we
face failures during the recovery. For example, the new leader may
behave maliciously by not sending the new view message or proposing a
conflicting or inconsistent new view. The network may also drop or delay
messages indefinitely, exhibiting an unreliable behavior. The recovery is
entirely based on the timeout period, so now the central question that
arises is what happens if a replica times out again after issuing a view
change message? Or maybe a replica should wait indefinitely once it
raises a view change?

Essentially the view change serves as a lockstep to ensure the network
and the majority of all replicas are sufficiently synchronized. It is
centered around the basic principle of the formation of recovery quorum
to achieve this subtle time synchronization intricacy.

1. What would happen if a replica times out after sending its view
change message but before observing a recovery quorum?

2. What would happen if a replica times out after observing the
recovery quorum?

The solution is fairly simple yet powerful. As long as recovery quorum
is not formed, the timed out replica will indefinitely re-transmit its view
change message, i.e., as if time stops. Once the recovery quorum is
formed, then a replica will issue a new view change for the next leader,
i.e., time is advanced. Thus, all non-faulty replicas synchronize on
the single event of quorum formation to agree upon who the next
leader is in order to synchronize their time and state. An example of
repeated failures that is resolved by time synchronization is presented
in Figure 6.5.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.2. Consensus Foundation 85

ViewChange
(Retransmission)

Time
Synch

NewView
(r1)

ViewChange Time
Synch

NewView
(r2)

r3

r2

r1

p

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time −→

Figure 6.5: Repeated Failure Recovery: A schematic representation of the Pbft
view change protocol that tolerates repeated failures. All replicas detect the primary
p failure and initiate leader replacement via ViewChange message. After sending its
view change message, R2 timer expires at time T6 before observing the recovery
quorum; therefore, R2 re-transmits its ViewChange message. Between the time T9
to T13, all replicas observe the recovery quorum formation of {R1, R2, R3}. At
the time T13, R1 is elected as the new leader and broadcasts the NewView message.
However, both R2 and R3 time out at T17 before receiving NewView from R1. Thus,
both R2 and R3 concludes the failure of R1 and initiates another view change to
elect R2 as the next leader. Between the time T22 to T25, all replicas observe the
formation of the recovery quorum. At the time T25, R2 is elected as the new leader
and broadcasts the NewView message successfully.

Considering that Pbft operates in partial synchrony, each replica
relies on correctly guessing the unknown but the bounded network delay
to set its local timer. If the chosen time-out period is too small, replicas
may continuously trigger view change, and no progress is made. If the
time out is too large, then the malicious primary and replicas may
artificially delay sending their messages, reducing the overall progress
proportional to the presumed network delay. Therefore, the replicas can
start with a reasonably small timeout based on the average expected
delay of the network. Still, if an inadequate length is chosen, the time-
out period can increase exponentially during view change, taking an
effect in all subsequent rounds.

To summarize, we emphasize that Pbft implicitly makes progress
(to ensure liveness) in lockstep where a quorum (to ensure safety) is
always necessary to lock and unlock any steps. When a replica reaches the
prepared state for the proposal τ after observing a prepared quorum for

The version of record is available at: http://dx.doi.org/10.1561/1900000075

86 Consensus for Blockchain

Commitment

r3

r2

r1

p
c τi−1

Accepted
τi−1

Locked
on τi−1

Execute
τi−1

f + 1 Votes

ViewChange NewView
Propose
τi−1

Prepare Commit Inform

(a) Pbft Recovery Protocol

Commitment Commitment

r3

r2

r1

p
c τi

Locked
on τi−1

Execute
τi−1

Locked
on τi

Execute
τi

f + 1 Votes

ViewChange
Propose
τi−1

NewView
Prepared
τi−1

NewView
Commit
τi−1

Propose
τi

Prepare Commit Inform

(b) Complete Pbft Protocol with Optimized Recovery

Figure 6.6: (a) A schematic representation of Pbft recovery as lockstep flow. A
new primary p is elected via ViewChange and NewView. As part of ViewChange, all
well-behaving replicas broadcast τi−1 that was previously prepared at the round ρi−1.
As part of NewView, the primary constructs a recovery quorum that includes τi−1
at ρi−1, which indirectly serves as a proposal for τi−1 at ρi−1. Replicas accepts τi−1
as a valid proposal to be recovered at ρi−1. Once the new view deemed valid, then
replicas commit to τi−1 via two phases of all-to-all message exchange. The primary
may propose τi at ρi when broadcasting the τi−1 proposal for the round ρi−1.
(b) A schematic representation of the complete Pbft protocol as lockstep flow that
entails both the optimized recovery and commitment flow. As part of ViewChange,
all well-behaving replicas broadcast τi−1 that was previously prepared at the round
ρi−1, which indirectly serves as a decentralized proposal for τi−1 at ρi−1. As part of
NewView, the primary constructs a recovery quorum that includes τi−1, which may
indirectly serve as a prepared quorum for τi−1 at ρi−1. Replicas accept and lock τi−1.
Replicas commit to the new view of τi−1 via one phase of all-to-all message exchange.
Once the new view is committed, then the primary p follows the commitment flow
of the protocol to propose the client’s transaction τ at the round ρi to all replicas
via Propose message. Replicas commit to τ via two phases of all-to-all message
exchange.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.2. Consensus Foundation 87

τ , it is implicitly locked on the prepared state of τ . Subsequently, when a
replica reaches the commit step after observing a commitment quorum,
it commits τ . A commit of τ is guaranteed never to be overwritten
and will endure any future recovery invocations. However, the prepared
state of τ may be overwritten, implicitly releasing the prepared lock on
τ during the view change if the presented recovery quorum does not
include τ with sufficient support. Furthermore, any proposal τ included
in the new view that is supported by a recovery quorum can be viewed
as an implicit locked prepared state for τ , which means unless the new
leader commits it, the proposal τ may be overwritten in the subsequent
views. However, as soon as any non-faulty replica commits τ , it will
indefinitely re-appear in every possible recovery quorum, so it will never
be overwritten. The lockstep flow of the Pbft protocol along with the
commitment of the new view is presented in Figure 6.6.

Looking deeper into the recovery protocol and examining the re-
quired phases to establish a unique new view, we can observe that the
commitment and recovery are nearly identical as annotated in Figure 6.6.
Both commitment and recovery involve Propose, Prepare, and Commit
phases. Their distinguishing factor is as follows. Through the commit-
ment protocol, the agreement is reached on the client’s proposal in the
current view, whereas through the recovery protocol, the agreement
is reached on replicas’ prepared proposals, namely, what clients had
previously proposed in earlier views. Furthermore, the recovery and
commitment can further be optimized by allowing the new primary to
restore the previously prepared proposal (e. g., ρi−1 in Figure 6.6) and
the new proposal (e. g., ρi) at the same time as part of its ViewChange
message. Therefore, reducing the number of phases by collapsing the
recovery and commitment as shown in Figure 6.7.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

88 Consensus for Blockchain

Commitment

r3

r2

r1

p
c

τi

Accepted
τi−1

Locked
τi−1, τi

Execute
τi−1, τi

f + 1
Votes

ViewChange
Propose
τi−1, τi

Prepare Commit Inform

Figure 6.7: A schematic representation of the complete Pbft protocol as lockstep
flow, in which τi−1 was prepared at ρi−1 while τi is being proposed in the round ρi.
The representation is further simplified and optimized by allowing the new primary
to include the proposal for the new round ρi as part of its ViewChange along with
what it was prepared previously at the round ρi−1, essentially eliminating the need
to have an explicit NewView phase as required in Figure 6.6. In a sense, offering an
optimistic mechanism that assumes that the new non-faulty leader is aware of what
was proposed previously while allowing all replicas to independently construct the
same new view confirmed via Prepare phase.

6.2.4 Checkpoint Protocol: Decentralized Commitment

To avoid re-committing the entire history repeatedly, Pbft periodi-
cally executes a decentralized checkpoint protocol after a fixed, but
configurable number of rounds, referred to as the checkpoint window
with size w that ranges between the low and high watermarks, l and h,
respectively. After every w rounds, all replicas expect to checkpoint all
preceding rounds smaller than h. Unless the checkpoint is successful,
which may fail because the primary has kept f replicas in dark or the
network is unreliable, replicas will stop accepting any new proposal
forcing the replacement of the primary.

After every w round, replicas broadcast a single checkpoint message
with a digest that represents the decision of every round since the last
stable checkpoint. Once a replica receives 2f + 1 matching checkpoint
messages, i.e., a checkpoint quorum, this replica marks it as a stable
checkpoint. Any replica in the dark that receives f + 1 matching check-

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.2. Consensus Foundation 89

point messages can be assured that all the decisions are final because at
least one non-faulty replica has committed every single round. Therefore,
checkpoint serves as the means to recover the replicas in dark.15 In turn,
the recovered replicas may further contribute to the formation of the
checkpoint quorum to reach a new stable checkpoint. The flow of the
checkpoint protocol is presented in Figure 6.8.

Commitment Checkpoint

r3

r2

r1
p
c τ

Execute
τ

[Proof-of-Commit]

Recover
τ

Stable
Checkpoint

f + 1 Votes

Propose Prepare Commit

Inform

Checkpoint Checkpoint

Figure 6.8: A schematic representation of Pbft checkpoint protocol, in which the
malicious primary p does not send Propose message to r3, keeping r3 in dark. The
remaining replicas commit to τ via two phases of all-to-all message exchange. The
non-faulty replicas r1 and r2 initiate Checkpoint phase, forming a weak quorum of
size f + 1 sufficient to recover r3. Subsequently, r3 broadcasts its own Checkpoint
message to form the checkpoint quorum and establishing the stable checkpoint.

The key to the power of checkpoint lies in its decentralized design
that avoids the need to rely on any leader to drive progress, but if no
progress is made, it conveniently falls back on the view change. In the
commitment flow of Pbft, the leader may keep a set of replicas in
dark without violating the consensus liveness. In contrast, during the
checkpoint, as long as the network is reliable, all non-faulty replicas will
broadcast their checkpoint state that allows recovering any replicas kept
in dark. Any proposal τi at round ρi that is supported by a checkpoint
quorum will be part of the stable checkpoint and marked as permanently
committed. As a result, the view change protocol itself can further be

15It will be the replica’s responsibility to reach out to at least f + 1 replicas
in order to determine the actual client’s proposals that were committed in each
checkpointed round if not known already.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

90 Consensus for Blockchain

optimized by only constructing a recovery quorum since the last stable
checkpoint.

6.2.5 Optimization: Amortized Pipeline Design

There are basic yet essential optimization applicable to Pbft such as (1)
batching proposals, and (2) out-of-order processing of proposals [33], [34],
[64], [69]. The former is relatively a standard optimization technique that
is to run consensus on a batch of proposals instead of running consensus
on one proposal at a time. Thus, amortizing the cost of consensus over
the size of the batch. The second optimization is rather involved and
may influence how the execution and recovery are carried out.

When there is no out-of-order processing, we only start consensus
on a new proposal (or a batch of them) once consensus for the current
proposal is completed, i.e., sequential consensus. With out-of-order
processing disabled, the network and the entire pipeline, especially the
backup replicas, are often underutilized. By enabling it, the primary does
not have to wait to complete the first round before starting subsequent
rounds. In general, replicas are not required to prepare or commit the
proposal τi before endorsing the proposal τj , where i and j corresponds
to the rounds ρi and ρj and i < j. This allows the primary to issue
as many proposals as possible in order to fully saturate its pipeline.
Additionally, both the primary and replicas can respond to messages
out of order, while tolerating any arbitrary re-ordering of messages by
the network as well.

Noteworthy, the actual execution will always be serialized, so in a
sense, we are decoupling ordering, out-of-order commitment, from the
serial execution on the already ordered proposals. This optimization
introduces a new kind of attack, in which the primary assigns and orders
proposals for every round but skips the first round. Even though the
ordering is completed successfully for all proposals, the entire execution
is stalled because execution, unlike ordering, must be done serially and
requires the commitment of the first round before executing the second
proposal and so on.

Pbft handles such attacks by relying on the notion of low- and
high-watermark window (e.g., l and h) such that all proposals between
the rounds ρl and ρh must be completed (i.e., checkpointed) before the

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.3. Consensus Landscape 91

primary can advance beyond the round ρh. Consequently, all replicas will
stop accepting new proposals unless all rounds smaller than and equal to
the high watermark are committed. When replicas stop accepting new
proposals, clients will inevitably complain, and eventually, the primary
is voted out, and the view is changed. The consensus flow of ordering
and execution are visualized in Figure 6.9.

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8
Window = [ρ1, · · · , ρ7]

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7

Ordering

Execution

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Time −→

(a) In-Order Processing

Ordering

Execution

ρ1 ρ4 ρ5

ρ3 ρ2

ρ6 ρ7
Window = [ρ1, · · · , ρ7] Window = [ρ8, · · · , ρ14]

ρ8

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Time −→

(b) Out-of-Order Processing

Figure 6.9: (a) A schematic representation of running consensus sequentially, i.e.,
in-order processing, such that consensus on the round ρj does not start until the
round ρi is completed, where i ≤ j. Each blue box represents a consensus step for the
round ρi while each green box represents the execution step of the proposal decided
in the round ρi. (b) A schematic representation of running consensus out-of-order
such that the primary may initiate consensus on the round ρj before completion of
previous rounds in its low and high watermark window, which is set to 7. Consensus
is carried out-of-order while the execution is strictly processed in round order.

6.3 Consensus Landscape

In this section, we explore how the design of Pbft can be advanced in
a principle way as we survey four essential design patterns: speculation,
optimism, concurrency, and linearization.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

92 Consensus for Blockchain

6.3.1 Speculative Consensus: Delayed Commitment

A natural optimization question arises as to whether all phases of Pbft
are necessary or whether we can reduce them. We conjecture that both
phases are necessary. If we drop the commit phase, liveness is potentially
affected, and if both prepare and commit phases are dropped, safety is
affected. However, this does not rule out creative ways to delay or
amortize them speculatively.16

Let us re-examine Pbft, as shown in Figure 6.10a. In the prepare
phase, we establish that the primary proposed the same value to a
quorum (cf. prepared quorum), and in the commit phase, we establish
that an entire quorum is aware that the primary proposed the same
value (cf. commitment quorum). In other words, from the perspective
of a replica after the prepare phase, this replica is only aware of its
own prepared state, i.e., that the primary behaved and proposed the
same value to a quorum. But after the commit phase, a replica is also
aware of the prepared state of an entire commitment quorum, i.e.,
knows a quorum has prepared. The basic principle is to ensure sufficient
redundancy is propagated, and there is at least one non-faulty observer
that can attest to the existence of a commitment quorum since any
recovery quorum would overlap with the commitment quorum, and the
proposal will be preserved upon recovery.

In Pbft, the observer is assumed to be a replica, a sufficient but
not a necessary condition. This is the precise intuition behind Proof-
of-Execution (PoE) that allows the client to take on the role of
the observer [62], [74].17 As long as the client observes a commitment
quorum, the preservation of its proposal will be certain to survive any
interruption after recovery. Interestingly, replicas in PoE are only aware
of their own prepared state and unaware of the commitment state.
Any replica that reaches the prepared state will speculatively execute
transactions serially and inform the client. Subsequently, the client
expects to receive matching speculative execution from a quorum to
construct a proof-of-execution.

16An alternative approach to reduce the number of phases is to increase redun-
dancy [11], [61], [96].

17A similar observation was hinted at in the original Pbft paper described as
tentative execution along with an abort mechanism of reverting back to the last
checkpoint in presence of failures [33].

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.3. Consensus Landscape 93

r3

r2

r1
p
c τ

Execute τ

f + 1 Votes

Propose Prepare Commit Inform

(a) Pbft Protocol

r3

r2

r1
p
c τ

Execute τ
(Speculatively)

2f + 1 Votes

Propose Prepare Inform

(b) PoE Protocol

r3

r2

r1
p
c τ

Execute τ
(Speculatively)

2f + 1 Votes

Propose Prepare Certify Inform

(c) Linear PoE Protocol

Figure 6.10: (a) A schematic representation of the Pbft protocol, in which the
primary proposes the client’s transaction τ to all replicas via a Propose message.
Replicas commit to τ via two phases of all-to-all message exchange. The client expects
f +1 matching responses to conclude the commitment. (b) A schematic representation
of the PoE protocol, in which the primary proposes the client’s transaction τ to
all replicas via a Propose message. Replicas commit to τ via one speculative phase
of all-to-all message exchange via Prepare. However, PoE expects the client to
collect 2f +1 matching responses before concluding the commitment. (c) A schematic
representation of the Linear PoE protocol, in which the single phase of all-to-all
message exchange is broken down into two linear phase of Prepare and Certify,
delegating the aggregation of votes to the primary using threshold signature.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

94 Consensus for Blockchain

In the absence of any commitment quorum before execution, it
is plausible that during recovery, a replica in PoE discovers that its
speculatively executed proposal was not selected in the recovery quorum,
forcing the replica to roll back contrary to Pbft’s design. The proposal
can only be excluded from a recovery quorum if less than a quorum of
replicas prepared it, implying that it could not have been committed and
the client could not have observed a commitment quorum. So excluding
it does not violate safety. The flow PoE as shown in Figure 6.10b
that can further be transformed into a linear protocol by applying the
threshold signature optimization as illustrated in Figure 6.10c. Basically,
the threshold signature can linearize any all-to-all communication into
two linear phases of all-to-one and one-to-all, where one replica, often
the primary, acts as an aggregator to collect individual signatures to
construct a certificate.

Although PoE reaches commitment safely after a client observes
a commitment quorum, it may temporarily be subject to the client’s
liveness break, but not a liveness break for consensus. PoE’s suffers
from what we refer to as a commitment imbalance.

In Pbft, we expect that at least the majority of non-faulty replicas
(f +1) contributing to both the prepared and commitment quorums, i.e.,
the minimum commitment necessity, allowing up to f faulty replicas in
the quorum formation. But, more importantly, in Pbft, we expect that
at most the majority of non-faulty replicas have to inform the client,
i.e., the maximum informed necessity. Thus, by design, the minimum
commitment necessity is always equal or greater than the maximum
informant necessity, in other words, commitment implies a successful
informant when the communication is reliable.18

Similarly, in PoE, we also expect that at least the majority of
non-faulty replicas (f + 1) to contribute to the prepared quorum, i.e.,
the minimum commitment necessity, allowing up to f faulty replicas in
the quorum formation. In contrast, PoE, expects that all non-faulty
replicas (2f + 1) to inform the client, the maximum informed necessity,
because unavoidably the f faulty replicas who may have assisted in

18Note, if the majority of non-faulty fail to reach commitment, then the recovery
protocol is invoked, which will eventually restore the liveness.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.3. Consensus Landscape 95

the prepared quorum formation may not comply. Unfortunately, the
minimum commitment necessity is no longer guaranteed to be equal
or greater than the maximum informed necessity; hence, speculative
commitment does not imply a successful informant even when the
communication is reliable. This subtle balance is violated in PoE and
may affect any protocol that forces a client to collect a stronger quorum
of size 2f + 1 instead of f + 1.

Instead of the client, if the commitment observer was a replica,
as in Pbft, then when no non-faulty replica observes a commitment
quorum, the recovery will eventually be invoked. But since only the
client may observe the commitment quorum in PoE, it will not have
sufficient power to unilaterally trigger the recovery as long as the
majority of replicas have been prepared. Aligned with Pbft, no single
participant will ever have the power to convince the majority to initiate
the recovery as at least f + 1 endorsements are needed unless verifiable
proof of misbehavior can be presented. Thus, in PoE, the response to
the client may stall until the outcome of speculation is consolidated
among non-faulty replicas, which can be obtained during the checkpoint
phase. But as long as the majority of replicas have prepared the client’s
proposal, then consensus remains both live and safe while the client’s
liveness break remains undetected. If the majority of non-faulty replicas
did not reach the prepared state, then non-faulty replicas will support
the client’s objection that no commitment quorum was formed.

Instigating such a client liveness attack is rather simple. Let’s con-
sider we have three sets of replicas, set F to present f faulty replicas,
D to present f non-faulty replicas kept in dark, and G to present f + 1
non-faulty replicas. The malicious primary keeps D in the dark, and
given D is smaller than f + 1, D is unable to trigger view change. The
malicious primary orders the proposal through a single phase of consen-
sus, in which both F and G behave to construct the prepared quorum.
Hence, the consensus remains live and safe. If F does not comply with
forming the prepared quorum, then D and G together can trigger view
change. However, if F behaves sufficiently well to advance consensus,
but F does not inform the client, then the client is unable to form the
commit quorum. Now suppose the client complains and only the set D
supports the client’s claim. This will be insufficient to cause the view
change. As a result, the client will stall.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

96 Consensus for Blockchain

Due to the elimination of the commit phase, clearly, there is a po-
tential client liveness attack in PoE that can only be addressed through
the checkpoint phase, which serves as a decentralized delayed commit
phase. We can perceive PoE as the principle approach to delay (but
not eliminate) the commit phase to post execution. Therefore, in PoE,
the commit phase is optimistically removed from the consensus’ critical
path in order to inform the client with fewer phases when there is
a well-behaving quorum of replicas. To circumvent the commitment
imbalance, PoE introduces a sub-routine, referred to CheckCommit
protocol, that not only restores the client’s liveness but also serves as
a checkpoint mechanism.

The basic flow of CheckCommit protocol is initiated via the
CheckCommit phase as illustrated in Figure 6.11a. Similar to Pbft’s
checkpoint, a non-faulty replica periodically invokes CheckCommit phase
after every kth rounds. For example, at round ρk, a non-faulty replica
broadcasts CheckCommit if it has already reached prepared state for
the last k rounds. A prepared replica that obtains 2f + 1 CheckCommit
messages for round ρk will consider it as a stable checkpoint. However,
if a replica never reached the prepared state for the round ρk, but it
receives f + 1 CheckCommit messages it will consider the last kth rounds
as prepared. Furthermore, it will issue its own CheckCommit message
to assist non-faulty replicas in reaching stable checkpoint state in a
decentralized manner without relying on any primary.

Any replica that reaches the prepared state will also send Inform
message to the client as well. This will allow the client to collect its
necessary 2f + 1 endorsements. Alternatively, when a replica reaches
the stable checkpoint, it may also send InformCC message to the client,
conveying to the client that not only was its proposal prepared, but it
was also committed. As a result, it would be sufficient for the client to
collect f + 1 matching InformCC instead of the 2f + 1 Inform messages
that convey only the preparedness. If the non-faulty replicas are unable
to reach the stable checkpoint state after every k rounds, then they
simply blame the primary and fall back to view change to restore the
state.

In contrast to the commitment flow of PoE that permits out-of-order
processing, the CheckCommit protocol adopts in-order processing of

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.3. Consensus Landscape 97

r3
r2
r1
p
c τ

Execute τ
(Speculatively)

[Proof-of-Execution]

Recover τ
(Prepared)

Stable
Checkpoint

(Delayed Commit)

[Proof-of-Commit]

2f + 1 Votes f + 1
Votes

Propose Prepare CheckCommit

Inform

CheckCommit

Inform InformCC

(a) CheckCommit Protocol in PoE

r3
r2
r1
p
c τ

Execute τ
(Speculatively)

[Proof-of-Execution]

Recover τ
(Prepared)

Stable
Checkpoint

(Delayed Commit)

[Proof-of-Commit]

f + 1
CC Signatures

2f + 1
CC Signatures

2f + 1
Votes

f + 1
Votes

Propose Prepare CheckCommit

Inform

RecoveryCCCheckCommit

Inform

StableCC

InformCC

(b) Linear CheckCommit Protocol in PoE

Figure 6.11: (a) A schematic representation of PoE’s CheckCommit protocol.
The malicious primary p does not send Propose message to r3, keeping r3 in dark.
The remaining replicas commit to τ via one speculative phase of all-to-all message
exchange via Prepare; however, the client is unable to form a commitment quorum
consisting of 2f +1 votes, resulting in an undetectable client liveness attack. The non-
faulty replicas r1 and r2 broadcasts CheckCommit message, forming a weak quorum
of size f + 1 sufficient to recover r3. Subsequently, r3 informs the client to restore
client liveness and broadcasts its own CheckCommit message to form a commitment
quorum. Upon reaching the stable checkpoint, replicas (if needed) may send InformCC
to the client implying the replica has Proof-of-Commit; hence, the client would only
require to receive f + 1 InformCC matching votes. (b) A schematic representation
of the linear CheckCommit protocol. Through a round-robin assignment, each
replica is designated as a vote aggregator such that ri is assigned to round ρj , where
i = j mod n. Suppose r1 is assigned as the aggregator. The non-faulty replicas r2
signs CheckCommit message with both weak and strong threshold signatures. r1
using its own vote can form a weak quorum of size f + 1 sufficient to recover r3
by constructing RecoveryCC that is supported by f + 1 signatures. Subsequently,
r3 sends CheckCommit message to r1 enabling r1 to construct and broadcast a
commitment quorum via StableCC supported by 2f + 1 threshold signatures.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

98 Consensus for Blockchain

CheckCommit phase, which lies outside the critical path of consensus.
Furthermore, the choice to adopt in-order processing is not necessary
to ensure safety or restore client liveness. It is only intended to allow
PoE reach the stable checkpoint after every k rounds of consensus.
This would reduce the size of the view change message (as adopted
by Pbft) by only including the prepared state for every round since
the last stable checkpoint. Suppose the CheckCommit is not processed
in-order. As a result, ρk may be check committed successfully while the
fate of the ρi (where i < k) has yet to be determined, implying that all
non-faulty replicas need to provide information about ρi as part of their
view change message. Moreover, considering that replicas are unaware
of each other’s prepared states, then they would be forced to provide
information for all rounds if CheckCommit was not processed in-order.

The CheckCommit protocol is further optimized into a general
linear protocol, as presented in Figure 6.11b, that can form a new
foundation to design more efficient checkpoint protocols, also applicable
to Pbft. Every round of consensus (or every kth round) is assigned to
a replica as CheckCommit vote aggregator in a round-robin fashion, e.g.,
ri is assigned to the round ρj , where i = j mod n. The assigned replica
aggregates all CheckCommit votes to construct a threshold signature
certificate and broadcasts it to all replicas. Essentially transforming a
single phase of all-to-all communication into two phases of all-to-one and
one-to-all communication. Considering that up to f non-faulty replicas
may be in dark, then a non-faulty aggregator may only receive f + 1
CheckCommit votes, including its own vote. Therefore, the aggregator
aims to construct both weak and strong certificates, which require f + 1
and 2f + 1 threshold signatures, and are referred to as RecoveryCC
and StableCC, respectively. Any non-prepared, non-faulty replica that
receives the RecoveryCC message can restore its state and issues its own
CheckCommit to the aggregator. Any replica that receives StableCC can
conclude reaching the stable checkpoint state. To allow constructing both
weak and strong certificates, each prepared replica signs its CheckCommit
using both f + 1 and 2f + 1 threshold schemes. A non-faulty replica that
recovers through RecoveryCC message when issuing its CheckCommit
would only sign using 2f+1 threshold scheme because the weak certificate
has been created already by the aggregator.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.3. Consensus Landscape 99

What remains unanswered is how to cope with faulty aggregator,
unreliable network, or an insufficient number of CheckCommit messages.
Similar to the non-linear CheckCommit variant, the protocol relies on
in-order processing implying that no replica will issue CheckCommit mes-
sage unless all of its preceding rounds have been prepared since the last
stable checkpoint. Given the cumulative implication of CheckCommit,
the RecoveryCC and StableCC certificates for the round ρj aggregated
by ri is an implicit recovery for all rounds smaller and equal to j. Thus,
the success of ri compensates for the failure of earlier aggregators,
whether due to faulty behavior or network unreliability as demonstrated
in Figure 6.12.

r3

r2

r1
p
c

Recover
(Prepared)

Stable
Checkpoint

(Delayed Commit)

[Proof-of-Commit]
f + 1

CC Signatures
f + 1

CC Signatures
2f + 1

CC Signature

CheckCommit RecoveryCC CheckCommit RecoveryCC CheckCommit RecoveryCC CheckCommit StableCC

ρi−2 ρi−2, ρi−1 ρi−2, ρi−1, ρi

Figure 6.12: A schematic representation of linear CheckCommit protocol with
failures such that each replica is designated as a CheckCommit aggregator in a round-
robin fashion, in which ri is assigned to the round ρj , where i = j mod n. The
round-to-aggregator assignment is as follows: ρi−2 to r1, ρi−1 to r2, and ρi to r3. p
obtains sufficient number of CheckCommit messages but does not send RecoveryCC
exhibiting faulty behavior. r1 obtains sufficient number of CheckCommit messages
supported by f + 1 threshold signatures but its RecoveryCC are lost due to an
unreliable network. r2 obtains sufficient number of CheckCommit messages supported
by f + 1 threshold signatures and successfully broadcast RecoveryCC messages to
re-affirms that the rounds ρi−2, ρi−1, ρi were successfully prepared. Subsequently,
r3 sends CheckCommit message to r2 enabling r2 to construct and broadcast the
commitment quorum via StableCC supported by 2f + 1 threshold signatures.

If the CheckCommit protocol continuously fails, then eventually,
all replicas will stop accepting new proposals from the primary and
simply fall back to the view change by issuing ViewChange messages.
Therefore, the complexity of CheckCommit protocol is much simpler

The version of record is available at: http://dx.doi.org/10.1561/1900000075

100 Consensus for Blockchain

than reaching consensus because CheckCommit simply commits in
a decentralized way what was already proposed and prepared by the
primary. If the CheckCommit is unable to progress, it simply blames
the primary and replaces it. On the one hand, CheckCommit can
commit and checkpoint proposals without relying on a primary, while,
on the other hand, it will blame the primary when no progress is made.

To assess PoE objectively, the principle ideas in PoE that advances
Pbft are two-fold: (1) illustrating that the commit phase can safely be
removed from the critical path of consensus [62] and (2) introducing
the notion of a rotating aggregator as the basis for designing checkpoint
protocols in order to reach the commitment state in a completely
decentralized manner with linear communication [74].

6.3.2 Optimistic Consensus: Dual-Path Commitments

In addition to speculation, optimism can be introduced in consensus.
This optimism is rooted in the following claim: what if a failure is
rare and what could happen if there are no failures at all? If there is
unanimous support for a proposal, referred to as the fast path of the
protocol, could we potentially drop both prepare and commit phases?
When the optimistic no-failure assumption is not held, then a slow
fallback path can be instituted.

In Zyzzyva [94], albeit an unsafe protocol, both prepare and commit
phases are removed from the fast path. If the client observes unanimous
support, it concludes commitment through the fast path, and no further
action is necessary. To accommodate the fast path, replicas speculatively
execute the proposal as soon as the proposal is received from the primary
and inform the client. However, suppose a client waits long enough (a
parameter to be fine-tuned) but fails to receive unanimous support,
then it falls back to the slow path by constructing a prepared quorum
(assuming a quorum responded to the client after the prepare phase)
and sending it to all replicas. If a quorum of replicas acknowledges the
prepared quorum, then a non-faulty client can conclude commitment.
Notably, on the fast path, we have unanimous support, while on the
slow path, with fewer endorsements, a prepared certificate is formed.
During recovery in Zyzzyva, a prepared certificate may naturally carry
more weight and could overwrite possible unanimous support in an

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.3. Consensus Landscape 101

earlier round. It is possible that f faulty replicas may always retract
their endorsements that led to unanimous support because their vote
was never preserved in any exchanged certificate. This endorsement
mismatch leads to the safety flaw of Zyzzyva as demonstrated in [4]
and fixed in [5].

In a nutshell, consider a setting with four replicas consisting of an
initial faulty primary f and three non-faulty replicas, r1 · · · r3, and two
clients ca and cb who propose transactions τa and τb, respectively. At
round ρi, the primary equivocates by sending τa to r1 and r2 while
sending τb to r3. The client ca receives 2f + 1 endorsements from
f, r1, r2 and constructs a prepared certificate ⟨|τa|⟩ca , which is received
only by the faulty replica f before a view change is triggered due to
network unreliability. During the view change, the primary p does not
disclose the received prepared certificate for τa, and the new primary r1
observes a recovery quorum consisting of f, r1, r3 who claim τb, τa, τb

were proposed at round ρi. The primary r1 chooses and proposes τb

that forces all non-faulty replicas who had observed τa previously at
round ρi to roll back their speculative state. Subsequently, the client
cb receives unanimous support for τb with 3f + 1 endorsements and
considers τb as committed. Due to network unreliability, another view
change is triggered, and the new leader r2 observes the recovery quorum
of f, r2, r3, in which r2, r3 vote for τb while f revokes his vote for τb

and now discloses the prepared certificate for τa that had been received
in the first run of the protocol. The new leader r2 oblivious to cb’s
commitment favors the prepared certificate for ⟨|τa|⟩ca over f + 1 votes
for τb; thus, failing to preserve the committed transaction τb, which in
turn results in a critical safety violation, i.e., commitment of both τa

and τb at round ρi [4].
The safety flaw of Zyzzyva set the stage for the development of a

new dual-path protocol, named, Sbft [54]. Its slow-path is essentially
Pbft linearized using threshold signature, and its fast path is similar
to Zyzzyva but it requires a replica such as the primary instead
of the client to collect unanimous votes. Furthermore, the votes are
aggregated using threshold signature in both fast and slow paths, which
always results in forming a certificate to circumvent the mismatch that
appeared in Zyzzyva. The flow of both Zyzzyva and Sbft protocols
are demonstrated in Figure 6.13.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

102 Consensus for Blockchain

Slow Path
(fallback)

r3

r2

r1

p
c

τ

Execute τ
(Speculatively)

3f + 1 Votes

Execute τ

2f + 1 Votes

Propose Prepare Certify Inform

(a) Zyzzyva Protocol

Slow Path
(fallback)

r3

r2

r1

p
c

τ

Execute τ Execute τ

3f + 1
Signatures

2f + 1
Signatures

f + 1
Signatures 1 Vote

Propose Prepare Certify Commit Certify Inform Certify

(b) Sbft Protocol

Figure 6.13: (a) A schematic representation of the Zyzzyva protocol, in which the
primary proposes the client’s transaction τ to all replicas via a Propose message.
Replicas commit to τ via one speculative phase of the all-to-one message directly to
the client. Zyzzyva expects the client to collect 3f + 1 matching responses before
concluding the commitment when a zero-failure optimistic route is plausible, i.e., the
fast path. The client falls back to the slow path in the presence of even a single failure
and relies on a quorum of replicas to certify the speculative commitment through
two linear phases of Certify and Inform. On the slow path, Zyzzyva expects the
client to collect 2f + 1 matching responses before concluding commitment. (b) A
schematic representation of the Sbft protocol, in which the primary proposes the
client’s transaction τ to all replicas via a Propose message. In the fast path, replicas
speculatively prepare τ via two linear phases of Prepare and Certify while expecting
unanimous support, 3f + 1 certify votes collected by the leader to construct the
unanimous threshold signature (no client reliance). When the fast path fails, replicas
may still commit to τ via two additional linear phases of Commit and Certify while
expecting only support from the quorum of 2f + 1 replicas, and the leader constructs
a weaker-quorum of threshold signature. Once τ is committed (whether through a
slow or fast path), the execution is certified via another two linear phases of Inform
and Certify but expecting only support from a quorum of f + 1 replicas to sign,
and the leader constructs even a weaker execution-quorum of threshold signature.
The client is required to receive the execute certificate from a single replica.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.3. Consensus Landscape 103

6.3.3 Linearized Consensus: Rotating Leaders

By extending the linearized Pbft first introduced in the fast path of
Sbft, we arrive at a new protocol called HotStuff [157]. What sets
apart HotStuff from all previous protocols is that its commitment
and recovery flows are combined and linearized. In PoE and Sbft, only
the commitment flow of Pbft was linearized.

To combine the commitment and recovery protocols, HotStuff
relied on rotating the leader after every commitment. This resulted in
a flow consisting of four main stages of Propose, Prepare, PreCommit,
and Commit19 as demonstrated in Figure 6.14. At first glance, compared
to Pbft, the combined flow introduces (1) a new PreCommit phase to
lock the proposal explicitly and (2) leader rotation after every round
via NewView. Having the replicas locked on proposals eliminates the
need for all-to-all communication of what was previously prepared when
changing the view. Only the latest prepared proposal is communicated
with the next leader via NewView. This is an essential ingredient to
linearize the message complexity when issuing NewView.

The new leader may optimistically initiate a new round of consensus,
i.e., optimistic responsiveness, by choosing the presumably latest pre-
pared proposal as the basis without the need to first collect votes from a
quorum. If the chosen prepared proposal extends an invalid or outdated
locked proposal, then the leader’s proposal will not receive sufficient
endorsements to form a prepared quorum and will fail inevitably. A
non-faulty replica would only endorse a proposal that extends its latest
locked proposal. If a replica detects20 that its own uncommitted locked
proposal has already been overwritten and prepared by a newer proposal
in a later view, then the replica releases its locked state and accepts
the newer prepared proposal. Moreover, given that a new proposal may
not directly extend the replica’s latest prepared state, due to a multi-
tude of reasons such as temporary network partition, then a non-faulty
replica is forced to detect and fill the possible gap by consulting other

19In HotStuff, these phases were referred to as Prepare, PreCommit, Commit,
Decide, respectively, however, to ensure consistency in our unified model, we adopt
the simpler naming convention.

20The detection is an external routine, which requires a replica to reconcile its
states with others by gathering sufficient proofs such as committed certificates.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

104 Consensus for Blockchain

Leader
Rotation

Leader
Rotation

r3

r2

r1

p
c

τ

Locked on τ

Execute τ

Decide τ

f + 1 Votes

Propose Prepare Certify PreCommit Certify Commit Certify

Inform

NewView

Propose Prepare PreCommit Commit

Figure 6.14: A schematic representation of the HotStuff protocol, in which
the primary proposes client’s transaction τ to all replicas in-order via a Propose
message. The replicas prepare τ via two linear phases of Prepare and Certify while
expecting support from the quorum of 2f + 1 replicas, and the leader constructs the
prepare threshold signature. Next, the replicas precommit τ via two linear phases of
PreCommit and Certify while expecting support from the quorum of 2f + 1 replicas,
and the leader constructs the precommit threshold signature. Replicas lock on τ after
receiving the precommitted certificate. A replica would only release its lock only if it
receives a prepared certificate formed in higher rounds. Replicas finally commit to τ
via yet another two linear phases of Commit and Certify while expecting only support
from the quorum of 2f + 1 replicas, and the leader constructs a commit threshold
signature. Once τ is committed, the execution is carried out serially informing the
client (who expects f + 1 endorsements), and more importantly, all committed (or
timed out) replicas move to the next leader presenting their latest prepared certificate
(their last locked state) via NewView.

non-faulty replicas. In an attempt to fill the gap without any prior
knowledge, it is possible that the replica discovers that the proposed
prepared extension was in fact invalid, which results in a loss of work.
The provided latest prepared proposal could be invalid because the
leader was faulty or due to failed optimism of choosing an incorrect
proposal eagerly. Nevertheless, allowing a leader to choose the latest
proposal without a quorum or certificate will give rise to a new plane
of attacks by faulty leaders that were not feasible in Pbft.

Recall that recovery flow in Pbft consisted of three main steps: (1)
detecting a leader failure, (2) agreeing on who the next leader is, a subtle
yet critical synchronization step, and (3) agreeing on what was prepared
in previous rounds. Most importantly, all these three steps—failure
detection, leader replacement, prepared agreement—must be supported

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.3. Consensus Landscape 105

by a recovery quorum. The quorum is constructed in Pbft through
all-to-all quadratic communication. Now let’s examine HotStuff’s
attempt to linearize these steps. First, one may argue that HotStuff
is not concerned with failure detection as it rotates the leader after
every round, so no recovery quorum is needed. Second, there is also no
need to construct a recovery quorum to convince replicas of what was
prepared in the previous round because no replica will accept any latest
prepared proposal that does not extend its currently locked proposal.
However, it is unclear how HotStuff can ensure everyone agrees on
who the next leader is or how a replica would know when it is time to
begin acting as a leader in the presence of an unreliable network and
faulty replicas.

In Pbft, the view is never advanced unless supported by a quorum,
which implies that replicas endorsing the leader replacement will indefi-
nitely stall and send a view change message unless a recovery quorum is
formed. Thus, Pbft requires a phase with a quadratic communication
in its view change to synchronize and agree on who the next leader is.
To eliminate this quadratic step, HotStuff abstracts out this vital
synchronization step by encapsulating it in a black box referred to
as a pacemaker. However, delegating a necessary synchronization step
to a pacemaker does not eliminate its inherent quadratic complexity.
One way to realize the pacemaker in practice is (1) to assume the
existence of a global stabilization time after which the communication
becomes reliable such that the protocol can operate correctly and (2) to
weaken the communication model by assuming synchrony and reliable
communication (i.e., no message loss)—although a simple and valid
theoretical model, its practical utility remains limited. The abstraction
of the pacemaker gives rise to yet another important research question
as to how to efficiently achieve a global stabilization time (e.g., [26],
[27])?

The leader rotation design in HotStuff presents another interesting
challenge as it strictly enforces a sequential consensus. Because every
new proposal must extend the latest prepared proposal sequentially,
which in turn disallows the out-of-order processing optimization. The
out-of-order processing can partially be re-introduced by de-coupling
the reliable dissemination of client requests from the critical path of

The version of record is available at: http://dx.doi.org/10.1561/1900000075

106 Consensus for Blockchain

consensus as shown in [41], [88], [144]. However, in HotStuff, the
cost of sequential consensus is further exacerbated due to adopting an
eight-phase consensus flow after applying threshold signature because
only a single proposal can be ordered at a time as it passes through
all phases sequentially. In fact, the throughput would be limited by
the network latency and determined by the length of the pipeline.
Unavoidably, this may result in a long queue of unprocessed proposals
and under-utilization of the network bandwidth.

To overcome the performance limitation of the sequential consensus
design choice, the HotStuff protocol is further optimized to yield
a chained variant as presented in Figure 6.15. This variant would
shorten the sequential pipeline by reducing the number of explicitly
required phases such that the round ρi+1 would imply precommitment
of the round ρi while the round ρi+2 would mark the commitment of
the round ρi. In other words, leaders are rotated after every phase
of consensus as opposed to allowing a single leader to complete all
phases of consensus. As such, every phase now constitutes as a new
round for which the new leader must provide a new proposal (or no-
op) extending the latest prepared proposal from the earlier round.21

As a result, a single consensus decision requires the cooperation of at
least three consecutive well-behaving leaders. Contrary to the design
of Pbft, consensus liveness can no longer be guaranteed by relying on
a single non-faulty leader [3], [26], [27]. Overall, the chained approach
partially alleviates the loss of out-of-order processing by reducing the
length of the sequential pipeline while prescribing to the optimistic
assumption that the likelihood of observing consecutive non-faulty
leaders is high despite the expectation that roughly 1

3 of all replicas may
behave maliciously. For example, in the original chained HotStuff,
the liveness is completely lost in a setting consisting of four replicas
where one of the replicas is malicious because the protocol requires four
consecutive non-faulty leaders [3].

21Alternatively, the latest locked proposal could have been extended by the new
leader instead of the latest prepared proposal. However, extending the latest lock
will impede progress when adopting the chained HotStuff. It would translate into
allowing only every other leader to provide a new proposal because it would take
two non-faulty leaders and two rounds to lock a single proposal.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.3. Consensus Landscape 107

Leader
Rotation

Leader
Rotation

Leader
Rotation

Leader
Rotation

r4

r3

r2

r1

c
τi

Locked on τi Execute τi

f + 1
Votes

Propose
τi

Certify
NewView

r2

Propose
τi+1

Certify
NewView

r3

Propose
τi+2

Certify
NewView

r4

Propose
τi+3

Inform

Certify
NewView

r1

Propose
ρi

Prepare
ρi+1

PreCommit
ρi+2

Commit
ρi+3

Figure 6.15: A schematic representation of the chained HotStuff protocol. In
every round ρi, the leader is rotated. The new leader proposes the transaction τi to
all replicas in-order via a Propose message. Each replica rj certify τi via Certify,
denoted by ⟨|τi|⟩rj . Although the τi is endorsed by all replicas in round ρi, the
certificate of its prepared threshold signature can only be constructed by the next
leader at round ρi+1, denoted by ⟨|τi|⟩ρi . As a result, the transaction τi is prepared
at round ρi+1, precommitted and locked at round ρi+2, and committed and executed
at round ρi+3.

Now, let’s examine HotStuff protocol fundamentally, framing a
basic question as to whether there is a principle difference between
Pbft and HotStuff.22 At the surface level, HotStuff has an ex-
tra Precommit phase that explicitly introduces the notion of locking a
proposal after observing a precommit quorum (cf. Figure 6.14). Fur-
thermore, it invokes the NewView phase after every round of consensus
to communicate what was prepared in the previous round. Invoking
view change after every round can be applied to Pbft, as was studied
in [29], [30], [32], [150], which can further be viewed as a matter of how
the protocol is configured at runtime. So we focus on what does locking
at precommit state entail.

As explained earlier, Pbft strictly operates in lockstep, and replicas
are implicitly locked at the prepared state, and the state can be unlocked
in the view change phase if there is a recovery quorum that does not

22It is noteworthy that every consensus protocol covered here can be reduced
to Pbft. Arguably since its inception [33], Pbft has been the pillar of every fault-
tolerant consensus protocol that assumes a notion of identity to cast a vote.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

108 Consensus for Blockchain

support the locked proposal. In contrast, replicas in HotStuff are
locked in the precommit state, the stage after prepare, but they can
also be unlocked during the view change if they are presented with a
newer prepared proposal (supported by a quorum) that has overwritten
their current locked state. So the question is why HotStuff introduces
a new precommit phase that in essence delays acquiring the lock that
was held by Pbft at the prepared state. We argue that difference is
just a matter of semantics of our naming convention in how we label the
different phases. We claim that the notable difference between Pbft and
HotStuff is applying the threshold signature optimization to every
single phase of the protocol. Recall, in Sbft and PoE, the threshold
signature was only applied to the commitment flow of the protocol, but
in HotStuff, the same optimization is also applied to the recovery flow.

We demonstrate our claim through a simple transformation of Pbft
into HotStuff. We start from the basic Pbft protocol as shown in
Figure 6.16a, where we first run a view change to recover what was
prepared at the round ρi−1 followed by running consensus for round ρi.
To simplify the transformation, without loss of generality, we further
assume that the new primary includes the proposal for the round ρi

as part of its NewView message along with what it was prepared at
ρi−1, this basic optimization was also adopted by HotStuff when
constructing a prepared proposal. Next, in Figure 6.16b, we simply
apply threshold signature to Prepare and Commit of Pbft. The final
step is to apply the threshold signature to the ViewChange phase as
shown in Figure 6.16c. Unlike the linearization of Prepare and Commit
into two linear phases, the ViewChange phase transformation is subtle
as it requires three linear phases. Because the new leader must first
choose what was prepared in the previous round before certifying its
selection through two linear phases of Choose and Certify.

Intuitively, the reason why locking appears to be delayed in Hot-
Stuff is because what HotStuff calls Precommit is in fact Pbft’s
Prepare phase. Furthermore, HotStuff’s Prepare is in fact the last
step to linearize the view change phase to form a recovery quorum to
endorse the newly proposed view. Thus, what HotStuff establishes in
its Prepare is primarily to agree upon what was done in the previous
view in addition to what is being proposed in the new round.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.3. Consensus Landscape 109

r3
r2
r1
p
c τi

Accepted
τi−1

Locked
τi−1, τi

Execute
τi−1, τi

f + 1
Votes

ViewChangeNewView
Propose
τi−1, τi

Prepare Commit Inform

(a) Pbft Protocol with Recovery

r3
r2
r1
p
c τi

Accepted
τi−1

Locked
τi−1, τi

Execute
τi−1, τi

f + 1
Votes

ViewChangeNewView
Propose
τi−1, τi

Prepare Certify Commit Certify Inform

(b) Pbft: Linearized Commitment Flow

HotStuff Propose Prepare PreCommit Commit

r3
r2
r1
p
c τi

Accepted
τi−1

Locked
on τi−1, τi

Execute
τi−1, τi

f + 1
Votes

ViewChange Choose
τi−1

Certify NewView
Propose
τi−1, τi

Prepare Certify Commit Certify Inform

(c) Pbft 7→ HotStuff: Linearized Recovery & Commitment Flows

Figure 6.16: (a) A schematic representation of the complete Pbft protocol as
lockstep flow, in which τi−1 was prepared at ρi−1 while τi is being proposed in the
round ρi. (b) A schematic representation of the complete Pbft protocol by applying
threshold signature to linearize its commitment flow: Prepare and Commit. (c) A
schematic representation of the complete reduction of HotStuff to the linearized
Pbft protocol derived through a simple application of threshold signature to both
commitment and recovery flows: ViewChange, Prepare, and Commit. Notably, the
ViewChange phase discards the subtle time synchronization step of Pbft, which is
abstracted out as a black box, referred to as a pacemaker, in HotStuff.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

110 Consensus for Blockchain

As rightly claimed in HotStuff, choosing what was previously
prepared does satisfy optimistic responsiveness condition as the leader
does not need to wait for a quorum before making its selection via
Choose. However, to make any further progress, the leader relies on
the endorsement of the quorum to certify its selection as part of the
Certify phase. Hence, the notion of optimistic responsiveness no longer
holds beyond the first phase of consensus.

6.3.4 Concurrent Consensus: Concurrent Commitments

To move beyond improving the mechanics of running a single instance
of a consensus protocol, we shift our attention to concurrent consensus,
analogous to concurrency control protocols that are commonplace in
database systems. The overarching aim is to allow running multiple
instances of consensus concurrently with minimal coordination among
them. In theory, this would multiply the system throughout by the total
number of concurrent consensus, which would be similar to executing
many concurrent transactions.

We choose Resilient Concurrent Consensus (Rcc) as a rep-
resentative meta-protocol that may transform any single-primary con-
sensus protocol into a multi-primary concurrent design [63], [65]. Rcc
operates in rounds, where each round consists of three main phases
of local ordering, global ordering, and execution as illustrated in Fig-
ure 6.17a. Rcc further assumes that a local single-primary consensus
protocol could be separated into several independent subroutines such
as a Fault-tolerant Commit Algorithm (referred to as fca) to
order transactions; a checkpoint protocol to recover replicas in dark;
and recovery or view change protocol to deal with misbehaving primary
and an unreliable network.

Rcc exhibits a wait-free design by designating m > f replicas as
primaries, each running a local fca instance, in order to ensure there is
at least a non-faulty primary that can always make progress. Further-
more, all replicas participate in all m instances, resembling running m
independent and concurrent consensus in each round ρ. Since each in-
stance operates independently, as soon as it completes its fca for round
ρi, it will advance to locally order round ρi+1 irrespective of the state

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.3. Consensus Landscape 111

I1

I2...
Im

fca
fca

fca

⟨τ0⟩c0
⟨τ1⟩c1...

⟨τm⟩cm

order
requests

execute
requests

Concurrent Commitment
(Local Ordering)

Global Ordering Execution

(a) Overview of Rcc Protocol

O
rd

er
in

g
I 1 ρ1 ρ4 ρ5 ρ2

ρ7 ρ3

ρ6
Window = [ρ1, · · · , ρ7]

O
rd

er
in

g
I 2

Window = [ρ1, · · · , ρ7] Window = [ρ8, · · · , ρ14] Window = [ρ15, · · · , ρ21]

ρ1 ρ7 ρ2

ρ6 ρ5

ρ3 ρ4

Window = [ρ8, · · · , ρ14]

ρ8

Window = [ρ15, · · · , ρ21]

ρ13

I1ρ1 I2ρ1 I1ρ2 I2ρ2 I1ρ3 I2ρ3 I1ρ4 I2ρ4 I1ρ5 I2ρ5 I1ρ6 I2ρ6 I1ρ7 I2ρ7

E
xe

cu
ti

on

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Time −→

(b) Rcc with Out-of-Order Processing

Figure 6.17: (a) A schematic representation of the Rcc meta-protocol that runs m
concurrent instances of Fault-tolerant Commit Algorithm (fca) in a single
round. Each instance independently and continuously operates. There are m replicas
that act as primary running fca to locally order its local transaction ⟨τi⟩ci received
from its local client ci. Each replica further participates as a backup in m instances.
A round is considered to be completed once all m instances complete their local
ordering, deciding on either a transaction τi or a no-op upon recovery. Given m
decisions, they are ordered deterministically and executed serially by all replicas.
(b) A schematic representation of supporting out-of-order processing within each
instance of fca. The primary of each instance Ii may initiate fca on the round
ρj before waiting for any of the previous rounds to be completed first. Although
consensus can be carried out-of-order, the execution must be carried strictly in
order across all instances such that the execution of ρi is only possible when all the
preceding rounds for both instances have been executed. Each blue box represents
a consensus step for the round ρi while each green box represents the execution
step of the proposal decided in ρi. The lighter blue/green shades are associated with
I1 while the darker shades are associated with I2. It is assumed that I1 is ordered
before I2. The low-high watermark window size is 7.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

112 Consensus for Blockchain

of other concurrent consensus instances. Each instance may even enable
out-of-order processing as demonstrated in Figure 6.17b. Although the
local ordering is carried out independently and continuously, in each
round, Rcc must synchronize the global ordering to ensure consistent
execution and state replication across all replicas. Therefore, within
each round, once all local fcas are completed, then a deterministic and
consistent ordering is adopted by all replicas. Once the global ordering is
established, each replica independently and serially executes all ordered
transactions within each round similar to Pbft. Unlike the ordering,
the execution of round ρi must always precede the round ρi+1.

In any given round, if the local fca fails to reach commitment, then
the recovery protocol is triggered. The recovery itself would be a new
independent consensus instance that aims to recover the state of the
failed instance. However, unlike traditional view change protocol, it
does not attempt to replace the primary. Instead, it temporarily stops
the primary with an exponential back-off. To avoid global coordination
during recovery, Rcc adopts a fixed assignment of primary to each
instance. Thus, primaries are only stopped and never replaced.

In general, any multi-primary consensus design must cope with
collusion among primaries, an attack that was not present in Pbft. In
Rcc, primary collusion may go undetected, resulting in a loss of liveness.
For example, given two replicas rj and rk, the colluding primaries for
instances j and k may prevent rj to progress on instance k while
preventing rk to make progress on instance j. Although each instance
may appear to be live locally, neither rj and rk can progress as far
as the global ordering and execution are concerned; thus, creating a
deadlock stalling both instances from execution.

A checkpoint protocol allows the recovery of any replicas kept in
dark by the colluding primaries. By periodically running the checkpoint
protocol within each instance independently, Rcc ensures that no
replicas are kept indefinitely in dark, and eventually, the execution can
ensue.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.4. Consensus Topology 113

6.4 Consensus Topology

The next design point in our repertoire is to scale consensus by examining
the topology of consensus, namely, partitioning replicas into a set of
disjoint committees or clusters, where each cluster may maintain a full
or partial replication of the log.

6.4.1 Cross-Cluster Communication Primitive

Before inspecting the consensus partitioning idea, we identify a central
problem as to how to efficiently and reliably communicate between any
two clusters, where a cluster may have up to f faulty replicas. Of course,
the communication step can always be solved trivially as a consensus
step using Pbft or its variant. Yet the question remains as to whether
a reliable cluster communication has a lower computational complexity
cost than consensus.

The problem of sending a message reliably from one cluster to an-
other is formalized as Cluster Sending Primitive (Csp) in [76],
[79]. The basic idea of Csp is to ensure that at least one non-faulty
replica from the source cluster sends the message to another non-faulty
replica in the destination cluster. This observation serves as the basis to
establish the lower-bound of linear message complexity. Furthermore, an
optimal bijective cluster-sending algorithm is developed, which guaran-
tees at least a pair of non-faulty replicas will successfully communicate
by requiring at most 2f + 1 distinct pairwise communications when the
network is reliable, as shown in Figure 6.18.

The problem of Csp is further analyzed probabilistically such that
instead of invoking 2f + 1 pairwise communications in parallel, one can
randomly choose a pairwise communication at a time until the message
is communicated successfully [78]. The probabilistic variant is shown to
have constant inter-cluster message complexity in expectation reduced
from the original linear complexity.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

114 Consensus for Blockchain

C1:

C2:

r1 r2 r3 r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

Figure 6.18: A schematic representation of Cluster Sending Primitive (Csp)
to send a message reliably from C1 to C2, in which each Ci is of size 3f + 1 with
at most f = 2 faulty replicas. The bijective sending between two clusters relies on
pairwise communication, where each replica in the source cluster communicates
with a distinct replica in the destination cluster. The faulty replicas are marked
as red, and their communication is highlighted using dotted lines, while solid lines
mark communication between non-faulty replicas. In the worst case, 2f + 1 pairwise
communications are needed (assuming a reliable network) to ensure a message is
exchanged between at least one pair of non-faulty replicas, establishing the lower-
bound as linear message complexity.

6.4.2 Global Consensus: Full Replication

One way to restructure consensus is to form clusters of replicas and to
partition client workload among these clusters while retaining a fully
replicated model. In theory, all clusters could operate in parallel to
independently order their clients’ proposals locally, then replicate the
local order globally.

Csp may serve as the basis to design a global consensus protocol
over clusters of replicas that are geographically distributed across data
centers. We assume that each cluster is maintained independently yet
holds a full copy of data. The problem of global consensus can be
reduced to maintaining a fault-tolerant globally consistent replication
managed through local consensus. In particular, we examine GeoBFT
as a meta-protocol in a fully replicated setting such the client workload
is partitioned based on the network topology and clients’ proximity to
each cluster [66].

Clustered Setting: We model a topological-aware system as a par-
titioning of R into a set of clusters C = {C1, . . . , Cz}, in which each
cluster Ci, 1 ≤ i ≤ z, is a set of |Ci| = n replicas of which at most f are
faulty and can behave maliciously and possibly coordinated. We write
nCi = |Ci|, fCi = |F(Ci)|, and gCi = |G(Ci)| to denote the number of

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.4. Consensus Topology 115

replicas, faulty replicas, and good replicas in each cluster, respectively.
We assume that in each cluster nC > 3fC. Without loss of generality,
we further assume that a set of clients are partitioned dis-jointly across
the set of clusters C.

GeoBFT operates in rounds, and within each round ρ, clusters
accept clients’ transactions and order them locally using any consensus
protocol. Next, the local ordering is exchanged among clusters using
Csp. Once all local decisions are exchanged, a deterministic global
ordering is computed, similar to Rcc.23 Each cluster will execute all
transactions serially per the global order.

In each round, every cluster expects to receive a local decision
from all other clusters or at least a no-op heartbeat in the absence
of any clients’ transaction. Thus, the cluster-sending step can further
be optimized optimistically by assuming the primary of each cluster
is non-faulty and faithfully sends the local decision to at least f + 1
replicas in all remote clusters. This further reduces the number of global
messages further from 2f +1 to f +1. If the primary fails to transmit the
messages for any reason, e.g., faulty intent or unreliable communication,
then eventually, the remote cluster will timeout and invoke a remote
view change to replace the misbehaving remote primary to restore
the liveness. While a cluster is waiting for remote messages, it may
continue its local ordering for subsequent rounds as out-of-ordering can
be utilized. However, the execution stalls as it must be done in order.
The overall flow of GeoBFT is presented in Figure 6.19.

6.4.3 Sharded Consensus: Partial Replication

To scale parallelism one step further, the replicated state can be par-
titioned into shards. This gives rise to a partially replicated design,
in which each cluster (or a shard) holds only a slice of the log. Thus,
the execution of a single transaction may span multiple shards, which
requires a coordination mechanism among shards. First, we formally
extend our model to the sharded setting.

23Noteworthy, there is no need to exchange local consensus decisions in Rcc
because the same set of replicas runs all instances. In other words, unlike GeoBFT
that spans multiple clusters, Rcc runs over a single cluster.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

116 Consensus for Blockchain

r2,3
r2,2
r2,1
pC2

c2

r1,3
r1,2
r1,1
pC1

c1

τ2

τ1

Consensus
on τ2

Consensus
on τ1

E
xecute

τ
1
,
τ

2
E

xecute
τ

1
,
τ

2

Local
Request

Local
Commitment

Global
Sharing

Local
Sharing

Local
Inform

C2

C1

Figure 6.19: A schematic representation of the GeoBFT protocol over two clusters
Ci, i ∈ {1, 2}. Each cluster Ci independently run local consensus (e.g., Pbft) to order
the transaction τi issued by its client ci. Once the local commitment is completed, the
primary pCi in each cluster Ci constructs a committed certificate for τi and share it
via a linear inter-cluster communication primitive, i.e., Csp. In each round, after the
completion of the global sharing phase, all clusters execute all ordered transaction τi

serially in the same order and inform their local clients.

Sharded Setting: We model sharded system as a partitioning of R
into a set of z shards S = {S1, . . . , Sz}. Let Si ∈ S be a shard. We write
nSi = |Si| to denote the number of replicas in each Si and fSi = |F(Si)|
to denote the faulty replicas in each Si. We assume nS > 3fS . Let τ be
a transaction. We write shards(τ) ⊆ S to denote the shards that are
relevant to τ that hold the data that τ needs to read or write. We write
|shards(τ)| to denote the number of shards involved in τ .

The central problem in sharded setting can be reduced to studying
cross-shard coordination patterns inspired by 2pc. Conceptually, the
coordination in 2pc is nothing but a method to aggregate vote results
in an election. The cross-shard coordination pattern is classified as
linear, centralized, or decentralized through ByShard formalism [77].
These intuitive methods to collect votes are referred to as orchestration
patterns in ByShard and described as follows.

• Linear : To construct a chain of shards, where each shard forwards
its vote to the next shard in accordance to the shard priority order
until the last shard in the chain can tally the vote results (e.g.,
RingBFT [135])

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.4. Consensus Topology 117

• Centralized: To designate a single shard to collect all votes from
all shards (e.g., Ahl [42]).

• Decentralized: To instruct all shards to broadcast their votes to
all shards so that each shard can independently tally the votes
(e.g., Pessimistic Cerberus [75])

The orchestration patterns provide the means to tally and collect
votes in order to reach a decision and communicate it with all involved
shards as presented in Figure 6.20. What distinguishes these patterns
is the trade-off between the number of sequential vote-steps versus the
number of cluster-sending steps (cf. Csp). Suppose the transaction τ is
involved in |shards(τ)| = k shards. In linear orchestration, the number
of sequential steps to commit a decision is proportional to the number
of shards involved, which is k sequential vote steps, and, similarly, the
number of cluster-sending steps needed to reach a decision is also k.
In centralized orchestration, the number of sequential steps to commit
a decision is constant and fixed at 4, while the number of parallel
cluster-sending steps needed to reach a decision is 2k. In decentralized
orchestration, the number of sequential steps to commit a decision is
constant and fixed at 3, while the number of parallel cluster-sending
steps needed to reach a decision is k2. Intuitively, we conclude that the
linear approach is optimized for throughput at one end of the spectrum
by reducing the number of costly cluster-sending steps. In contrast, at
the other end of the spectrum, the decentralized approach is optimized
for latency at the cost of a quadratic number of cluster-sending steps.

In ByShard, each shard may further contribute to the processing
of transaction at a different capacity, modeled as vote-step and action-
step. A vote-step is intended to endorse whether a transaction should
be executed or not, for example, checking integrity constraints and
acquiring read or write locks. An action-step is tied to commit or
abort decision that is intended to make writes visible and release locks.
In ByShard, the complexity of these patterns is further analyzed in
conjunction with a wide range of consistency and isolation semantics,
e.g., dirty reads, committed reads, and serializability.

As a representative in the linear orchestration space, we examine
RingBFT, which is a meta-protocol for sharded consensus that requires

The version of record is available at: http://dx.doi.org/10.1561/1900000075

118 Consensus for Blockchain

c

S1

S2

S3

S4

S5

S6

τ

Vote Vote Vote Vote
[Decide]

Commit

(a) Linear Orchestration

c

S1

S2

S3

S4

S5

S6

τ

Vote
(Root)

Vote [Decide] Commit

(b) Centralized Orchestration

c

S1

S2

S3

S4

S5

S6

τ

Vote
(Root)

Vote [Decide]
Commit

(c) Distributed Orchestration

Figure 6.20: A schematic representation of the ByShard orchestration patterns
over six shards S = {S1, · · · , S6} in order to execute a cross-shard transaction τ with
shards(τ) = {S1, . . . , S6}. We assume that S1, S2, S3, and S4 have vote-steps while
S2, S5, and S6 have commit steps. Each dot represents a single local consensus step
and each arrow represents a cluster-sending step. It may be sufficient to have a single
shard informing the client. (a) A schematic representation of linear orchestration, in
which the orchestration begins at S1 and the final commit decision is determined at
S4 after three linear vote steps of S1, S2, and S3. (b) A schematic representation
of centralized orchestration, in which the orchestration is coordinated and the final
commit decision is determined by S1 after three parallel vote steps by S2, S3, and S4.
(c) A schematic representation of distributed orchestration, in which the orchestration
is initiated at S1 followed by three parallel vote steps by S2, S3, and S4. The final
commit decision is arrived independently by all shards in parallel. In the distributed
orchestration, each dashed black arrow represents a cluster-sending step in which
the root shard sends its vote to all the involved shards without vote-steps.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.4. Consensus Topology 119

all shards to adhere to a predetermined ring order [135]. It follows three
basic principles of process, forward, and re-transmit while ensuring
the communication between shards is linear. Conceptually, RingBFT
guarantees consensus for each cross-shard transaction in at most two
rotations around the ring. Each shard may participate in multiple
circular flows simultaneously. This implies that each shard performs
consensus (i.e., process) on transactions independently before forwarding
it to the next shard. This flow continues until each shard is aware of the
fate of the transaction. The flow of RingBFT is depicted in Figure 6.21.

The real challenge of processing cross-shard transactions is managing
conflicts and preventing distributed deadlocks. To this end, RingBFT
assumes that the read/write sets of each transaction are known as a pri-
ori, an approach that is widely adopted in deterministic databases [137].
RingBFT requires all cross-shard transactions to traverse each involved
shard in the ring order. The transaction is forwarded to the next shard
only if the read/write set can be locked at each shard in order to prevent
deadlocks. RingBFT forwarding relies on the linear cluster-sending
steps (cf. Csp) that exhibits a neighbor-to-neighbor communication
but unlike ByShard formulation does not assume reliable inter-cluster
communication.

To cope with the unreliable inter-cluster communication setting, the
recovery protocol of RingBFT is centered around three timers: local
timer, transmit timer, and remote timer. A local timer is necessary to
ensure the liveness of local commitment inside each shard, which can be
delegated to local view change and leader replacement routines. However,
to ensure cross-shard progress by successfully forwarding transactions
to the next shard, even in the presence of an adversarial network, then
additional timing mechanisms are required.

Unique to RingBFT, once a shard forwards a transaction using
the cluster-sending steps, each sending replica starts its transmit timer.
If the transmit timer expires before any commit decision is received,
the sender will indefinitely re-transmit the message and exponentially
increase its transmit timeout values. Therefore, the transmit timer is
utilized to detect and overcome challenges arising from the unreliable
network from the sender’s perspective. However, if the forwarding step
is partially successful, as soon as the receiving replicas can partially

The version of record is available at: http://dx.doi.org/10.1561/1900000075

120 Consensus for Blockchain

c1

c2c3

τ1

τ2τ3
S1 S2

S6 S3

S5 S4

Local
Consensus

on τ1

Local
Consensus

on τ1

Local
Consensus
on τ1, τ2

Local
Consensus

on τ2

Local
Consensus

on τ1

Local
Consensus

on τ3

Execute τ1 Execute τ1

Execute τ3 Exec τ1, τ2

Execute τ1 Execute τ2

Forward τ1
1st Rotation

Forward τ1
2nd Rotation

Figure 6.21: A schematic representation of the RingBFT protocol over six shards
S = {S1, · · · , S6}. Each shard Si is assigned a predetermined priority ring order i
such that Si has a higher priority than Sj when i < j, which results in the following
ring order S1 → S2 → S3 → S4 → S5 → S6. In the first rotation of RingBFT,
each shard Si independently runs a local consensus to order its transactions followed
by locking its read and write sets. Once the local commitment is completed, the
transaction is forwarded via a linear inter-cluster communication primitive to the
next involved shard in the ring order. The last involved shard will determine the
commit or abort decision, inform the client, and initiate the second rotation to
propagate the final decision, installing writes, and releasing locks in all involved
shards. The example illustrates how RingBFT concurrently orders two cross-shard
transactions shards(τ1) = {S1, S2, S3, S5} and shards(τ2) = {S3, S4} and a single-
shard transaction shards(τ3) = {S6}, proposed by the clients c1, c2, c3, respectively.
Notably, if the concurrent transactions τ1 and τ2 are conflicting at S3, then whichever
transaction that does not arrive first is held back until the execution of the first
transaction is completed and locks are released.

observe the state of the previous shard, they start their remote timers. A
partially forwarded state of a transaction implies that a transaction was
ordered in the previous shard, but it is unclear whether or not all read
and write locks could have been acquired. If the remote timer expires
before the full state of the previous shard is forwarded, the receiving
replica will indefinitely trigger a remote view change to replace the
primary of sending shards.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.5. Permissionless Consensus: Membership Model 121

Other notable sharding protocols are Ahl [42], SharPer [10], and
Cerberus [75]. Ahl, as a representative in the centralized orchestration
scheme, introduced the notion of a reference committee, itself a set of
replicas, as a centralized coordination entity to essentially run a fault-
tolerant two-phase commit protocol. Pessimistic Cerberus adopts a
decentralized orchestration design, in which each shard independently
reaches consensus on a fragment of the transaction for which it is
responsible and communicates the local decision to all involved shards
using a cluster-sending step (cf. Csp). Thus, each shard can unilaterally
decide the fate of the transaction once it receives decisions from all
involved shards. Consequently, a global view change is triggered to deal
with misbehaving clusters and network unreliability.

Alternatively, SharPer adopts a semi-decentralized model such
that one of the involved shards is designated as the initiator. Through
the initiator, all involved shards are logically seen as a single super-
shard on which a Pbft-like protocol is ran. Thus, SharPer relies
on all-to-all quadratic communication among all replicas of all the
involved shards. To cope with concurrent conflicting transactions, a
coarse-grained locking at the shard level may be employed. Optimistic
Cerberus also relies on the notion of a logical super shard that en-
compasses all involved shards to run a local consensus for a consistent
cross-shard ordering. Optimistic Cerberus does not promote any
shard as initiator and avoids any coarse-grained locking by leveraging
the unspent transaction model in [124], but its optimism may result
in higher abort rates due to contention among conflicting concurrent
transactions. Both SharPer and Optimistic Cerberus deviate from
the orchestration patterns in ByShard due to the formation of logical
super-shard and not leveraging the clustering-sending primitive as the
only mode of linear communication among shards. In fact, adopting a
notion of single logical super-shard in a sense eliminates the need for
having 2pc’s style vote-collection from multiple involved shards.

6.5 Permissionless Consensus: Membership Model

In the classical formulation of consensus in the permissioned setting,
we assume the existence of a verifiable identity, i.e., closed membership,

The version of record is available at: http://dx.doi.org/10.1561/1900000075

122 Consensus for Blockchain

and we adopt Pbft-like protocols. The existence of identity is necessary
because these protocols rely on counting votes to construct a quorum,
forming the majority. Without a verifiable identity, the entire concept
of election and voting is nullified because many fake identities can
be generated to dilute the election outcome, which is also known as
the Sybil attacks. But in the public permissionless setting, we rely on
Proof-of-Work (PoW) protocols [124] and assume the absence of a
central authority to issue verifiable identity, i.e., open membership.

In Pbft, the barrier to participate or vote is the existence of a
verifiable identity; however, in PoW, the barrier to voting is the proof
of work instead of the proof of identity. Before any participant can vote
in any round of PoW consensus, they must solve a compute-intensive
puzzle, which makes the creation of fake identities to dilute the election
prohibitively expensive. As a result, after each round of consensus,
Pbft will produce a verifiable certificate signed by the majority, while
in PoW, the certificate is the solution to a puzzle, the proof of work.
Therefore, in the absence of identity, solving a difficult puzzle may be
substituted as a viable alternative.

Unfortunately, the energy and resources loss from solving arbi-
trary random puzzles is unsustainable, further destroying our already
fragile environment and climate. This has led to the development
of rich array of Proof-of-X protocols to reduce the energy cost
such as Proof-of-Stake [91], Proof-of-Activity [19], Chains-of-
Activity [18], [90], Delegated Proof-of-Activity [25], Bonded
Proof-of-Activity [32], [111], Proof-of-Space [14], [47], [130], and
Power-of-Collaboration [39].

Furthermore, there is an abundance of clever optimization to scale
throughput such as sharding techniques that are adapted to the per-
missionless setting [92], [113], [161]. An important abstraction adapted
from the sharded setting is atomic cross-chain transactions with the key
difference that we expect each chain (i.e., shard) is maintained by inde-
pendent parties or consortia who may not necessarily trust each other.
Nevertheless, the overarching agreement problem can still be realized
by relying on 2pc paradigm or its ByShard generalization. So what
arguably distinguishes cross-chain from cross-shard is the certificate
that is produced as part of the local ordering within each chain.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

6.5. Permissionless Consensus: Membership Model 123

The ByShard formulation is sufficiently expressive to represent a
variety of cross-chain protocols because the key distinction that separates
cross-chain from cross-sharing is how Proof-of-X certificate is utilized
instead of a notarized certificate signed by a quorum of replicas. The
second differentiation is how the certificate is exchanged, which can be
facilitated through either a push or pull mechanism. The push can be
realized through Cluster Sending Primitive while the pull can be
viewed as retrieving the certificate directly from a common or shared
witness chain (i.e., ledger).

For example, the atomic cross-chain protocol presented in [158]
resembles a centralized orchestration design of ByShard in which
the central coordinator is modeled as a witness chain. Its basic design
dictates logging each transaction’s initiation and final outcome explicitly,
i.e., the commit or abort decision. The final decision can be provided
by any shard to the witness chain, acting as a central coordinator, as
long as verifiable and settled Proof-of-X-certificate from all shards
supporting the decision is written to the witness. In contrast, to explicitly
logging the final outcome on the witness chain, an alternative Certified
Blockchain (Cbc) protocol is developed in [80] such that the initiation
of the transaction and the individual votes of each shared are logged
onto the witness chain, again serving as central coordination medium to
tally votes. All valid shard-votes must be supported by a Proof-of-X
certificate. The final decision can easily be determined if all involved
shards voted to commit and abort otherwise.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

7
Conclusion

In this monograph, we provided an overview of the problem of consensus
and its use in data management systems. We covered the basic principles
and reference protocols for consensus solutions that are widely used.
Then, we described their use in two of the most important problem in
distributed data management: distributed atomic commit and data repli-
cation. Finally, we provided an overview of consensus in fault tolerant
environments where malicious and arbitrary faults may occur. This is an
area of increased interest due to emerging blockchain applications. We
described how consensus can be solved in such a setting and overviewed
various challenges and optimizations faced by these protocols.

We conclude this monograph with a brief discussion of anticipated
future directions and open problems in the area of applying consensus
to data management systems.

Consensus in Serverless Environments

An important recent development in cloud computing is the emergence
of the serverless compute model [84]. This model aims to simplify the
utilization of cloud resources. Instead of having to manage a virtual
machine, a programmer deploys their application functions and opera-

124

The version of record is available at: http://dx.doi.org/10.1561/1900000075

125

tions. The serverless framework, then, utilizes the deployed functions
to answer incoming requests for the application. In this Function-as-
a-Service (FaaS) model, the programmer is only charged when their
functions/applications are called and the provisioning of resources to
answer such requests is performed transparently.

To deliver the attractive serverless features to programmers, certain
limitations need to be enforced on the nature of deployed functions and
serverless workers that run these functions. One such limitation is that
the function is stateless, meaning that it needs to coordinate with other
services to manage any persistent state. This creates a challenge in
coordinating the processing and operation of different serverless workers
that are working on the same application and may perform conflicting
operation.

Applying traditional consensus algorithms in serverless environments
is not straightforward due to these limitations [73]. Therefore, there is a
need for work on consensus algorithms that overcome these limitations
and provide solutions that can operate in serverless environments. This
entails enabling consensus protocols to react seamlessly to changes in
the system model and configuration of the system. Such protocols can
be integrated to enable consensus on a dynamic set of serverless workers
that are continuously changing for each application. Towards that direc-
tion, consensus protocols that emphasize efficient reconfiguration [153]
and dynamic quorums [8], [82], [126] can be used as initial designs
to build on. Also, integrating relaxed consistency abstractions with
consensus solutions can offer a way to adapt to the highly dynamic
nature of serverless workers. This direction can build on Works such
as MDCC [95] that explore building data abstractions with relaxed
consistency over consensus algorithms.

Serverless environments will likely be part of larger data ecosystems
that contain traditional cloud services as well as external client envi-
ronments. This introduces interesting research challenges in terms of
developing consensus protocols that enable coordination across these
different types of infrastructures. ServerlessBFT [67] proposes a con-
sensus protocol to manage agreement of systems that utilize serverless
technology while spanning edge and cloud environments. Such a proto-
col needs to balance between the trade-offs of different environments in
terms of resources, trust, and functionality.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

126 Conclusion

Consensus for Decentralized Smart Contract Environments

The emergence of decentralized application (DApp) development raises
interesting opportunities and challenges on how to coordinate state
and interactions between the users of such applications. DApps are
applications that are deployed on blockchain infrastructures where users
can interact with the application by issuing requests to the corresponding
smart contracts [12]. This enables users to interact with the application
and its state that is preserved in the blockchain smart contract. This
abstraction can be utilized to coordinate between users. For example, a
smart contract can make decisions that pertain to a distributed system
or group of clients. This presents an opportunity to provide a single
source of coordination for distributed or decentralized systems/users.

However, the success of this model faces various challenges that
need to be addressed. One of these challenges is the cost and overhead
involved in interacting with DApps and smart contracts—especially
in public permissionless blockchains. Another set of challenges is due
to the security implications of coordinating through a transparent
infrastructure. Private data, for example, needs to be encrypted or
hidden, which may impact the complexity of the consensus process.
Also, users have access to the pool of transactions that are admitted
to miners, which presents the risk of malicious actors taking advantage
of this knowledge. For example, a malicious actor may observe the
votes/requests of other users and construct a vote/request accordingly.
This constructed request can even be pushed to be ordered before the
previously observed requests by paying higher fees to miners. This
pattern can lead to various attacks. Overcoming these challenges is
an active area of research that spans work on different layers of the
blockchain and DApp development stack.

Consensus for Edge-Cloud Environments

Emerging IoT and edge applications motivate the utilization of edge
resources for faster response times, better privacy and data regulation,
and to reduce the bandwidth utilization to centralized data centers. This
introduces the need for data management systems that span both edge
and cloud resources. Such systems pose interesting research challenges

The version of record is available at: http://dx.doi.org/10.1561/1900000075

127

due to the asymmetry of resources in the edge and the cloud. Designing
distributed protocols and consensus mechanisms that account for this
asymmetry has the potential of utilizing edge resources efficiently. Work
in this area includes proposing consensus protocols that aim to provide
better support for hierarchical and locality aware design [126]. Also, it
includes the support for coordination mechanisms that distinguish be-
tween processing in the edge and processing in the cloud [51], [119], [125].

The version of record is available at: http://dx.doi.org/10.1561/1900000075

References

[1] M. Abebe, B. Glasbergen, and K. Daudjee, “Dynamast: Adaptive
dynamic mastering for replicated systems,” in 36th IEEE Inter-
national Conference on Data Engineering (ICDE), 1381–1392.
(2020), 2020.

[2] M. Abebe, B. Glasbergen, and K. Daudjee, “Morphosys: Auto-
matic physical design metamorphosis for distributed database
systems,” Proceedings of the VLDB Endowment, vol. 13, no. 13,
2020, 3573–3587. (2020).

[3] I. Abraham, N. Crooks, N. Giridharan, H. Howard, and F. Suri-
Payer, “Brief announcement: It’s not easy to relax: Liveness in
chained BFT protocols,” in 36th International Symposium on
Distributed Computing (DISC), vol. 246, 39:1–39:3. (2022), 2022.

[4] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla, and J.
Martin, “Revisiting fast practical byzantine fault tolerance,”
CoRR, vol. abs/1712.01367. (2017), 2017. arXiv: 1712.01367.

[5] I. Abraham, G. Gueta, D. Malkhi, and J. Martin, “Revisiting fast
practical byzantine fault tolerance: Thelma, velma, and zelma,”
CoRR, vol. abs/1801.10022. (2018), 2018. arXiv: 1801.10022.

128

The version of record is available at: http://dx.doi.org/10.1561/1900000075

https://arxiv.org/abs/1712.01367
https://arxiv.org/abs/1801.10022

References 129

[6] A. Adya, “Weak consistency: A generalized theory and optimistic
implementations for distributed transactions,” Ph.D. dissertation,
Massachusetts Institute of Technology (MIT), Deptartment of
Electrical Engineering and Computer Science (EECS). (1999),
1999.

[7] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi, “Exploiting
atomic broadcast in replicated databases,” in European Confer-
ence on Parallel Processing (Euro-Par), 496–503. (1997), 1997.

[8] A. Ailijiang, A. Charapko, M. Demirbas, and T. Kosar, “Wpaxos:
Wide area network flexible consensus,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 1, 2019, 211–223.
(2019).

[9] P. A. Alsberg and J. D. Day, “A principle for resilient sharing of
distributed resources,” in Proceedings of the 2nd International
Conference on Software Engineering (ICSE), 562–570. (1976),
1976.

[10] M. J. Amiri, D. Agrawal, and A. E. Abbadi, “SharPer: Sharding
permissioned blockchains over network clusters,” in ACM Inter-
national Conference on Management of Data (SIGMOD), 76–88.
(2021), 2021.

[11] M. J. Amiri, C. Wu, D. Agrawal, A. E. Abbadi, B. T. Loo, and
M. Sadoghi, “The Bedrock of BFT: A unified platform for BFT
protocol design and implementation,” CoRR, vol. abs/2205.04534.
(2022), 2022. arXiv: 2205.04534.

[12] A. M. Antonopoulos and G. Wood, Mastering ethereum: building
smart contracts and dapps. O’reilly Media. (2018), 2018.

[13] V. Arora, T. Mittal, D. Agrawal, A. El Abbadi, X. Xue, et al.,
“Leader or majority: Why have one when you can have both?
improving read scalability in raft-like consensus protocols,” in
USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud). (2017), 2017.

[14] G. Ateniese, I. Bonacina, A. Faonio, and N. Galesi, “Proofs of
Space: When space is of the essence,” in Security and Cryptogra-
phy for Networks, 538–557. (2014), 2014.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

https://arxiv.org/abs/2205.04534

130 References

[15] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R.
Reischuk, “Achievable cases in an asynchronous environment,” in
Annual Symposium on Foundations of Computer Science (SFCS),
337–346. (1987), 1987.

[16] P. Bailis and A. Ghodsi, “Eventual consistency today: Limita-
tions, extensions, and beyond,” Communications of the ACM,
vol. 56, no. 5, 2013, 55–63. (2013).

[17] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J.
Larson, J. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore:
Providing scalable, highly available storage for interactive ser-
vices,” in Innovative Data Systems Research (CIDR), 223–234.
(2011), 2011.

[18] I. Bentov, A. Gabizon, and A. Mizrahi, “Cryptocurrencies with-
out proof of work,” in Financial Cryptography and Data Security,
142–157. (2016), Springer, 2016.

[19] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of
activity: Extending bitcoin’s proof of work via proof of stake
(extended abstract),” SIGMETRICS Performance Evaluation
Review, vol. 42, no. 3, 2014, 34–37. (2014).

[20] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil,
and P. E. O’Neil, “A critique of ANSI SQL isolation levels,” in
ACM International Conference on Management of Data (SIG-
MOD), 1–10. (1995), 1995.

[21] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
control and recovery in database systems, vol. 370. Addison-
Wesley, 1987. url: http://research.microsoft.com/en-us/people/
philbe/ccontrol.aspx.

[22] A. Bessani, M. Santos, J. Felix, N. Neves, and M. Correia, “On
the efficiency of durable state machine replication,” in USENIX
Annual Technical Conference (ATC), 169–180. (2013), 2013.

[23] M. Biely, Z. Milosevic, N. Santos, and A. Schiper, “S-paxos:
Offloading the leader for high throughput state machine repli-
cation,” in IEEE Symposium on Reliable Distributed Systems
(SRDS), 111–120. (2012), 2012.

[24] K. P. Birman and R. V. Renesse, Reliable distributed computing
with the Isis toolkit. IEEE Computer Society Press. (1993), 1993.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx

References 131

[25] BitShares-Core Contributors, Bitshares documentation, 2020.
url: https://how.bitshares.works/_/downloads/en/master/
pdf/.

[26] M. Bravo, G. V. Chockler, and A. Gotsman, “Making byzan-
tine consensus live,” in International Symposium on Distributed
Computing (DISC), ser. LIPIcs, vol. 179, 23:1–23:17. (2020),
2020.

[27] M. Bravo, G. V. Chockler, and A. Gotsman, “Making byzantine
consensus live,” Distributed Computing, vol. 35, no. 6, 2022, 503–
532. (2022).

[28] M. F. Bridgland and R. J. Watro, “Fault-tolerant decision making
in totally asynchronous distributed systems,” in ACM Symposium
on Principles of Distributed Computing, 52–63. (1987), 1987.

[29] E. Buchman, “Tendermint: Byzantine fault tolerance in the age
of blockchains,” Ph.D. dissertation, University of Guelph. (2016),
2016.

[30] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip
on BFT consensus,” CoRR, vol. abs/1807.04938. (2018), 2018.
arXiv: 1807.04938.

[31] M. Burrows, “The chubby lock service for loosely-coupled dis-
tributed systems,” in Symposium on Operating Systems Design
and Implementation (OSDI), 335–350. (2006), 2006.

[32] V. Buterin and V. Griffith, “Casper the friendly finality gadget,”
CoRR, vol. abs/1710.09437. (2017), 2017. arXiv: 1710.09437.

[33] M. Castro and B. Liskov, “Practical byzantine fault tolerance,”
in USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), 173–186. (1999), 1999.

[34] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems,
vol. 20, no. 4, 2002, 398–461. (2002).

[35] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live:
An engineering perspective,” in ACM Symposium on Principles
of Distributed Computing (PODC), 398–407. (2007), 2007.

[36] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure
detector for solving consensus,” Journal of the ACM (JACM),
vol. 43, no. 4, 1996, 685–722. (1996).

The version of record is available at: http://dx.doi.org/10.1561/1900000075

https://how.bitshares.works/_/downloads/en/master/pdf/
https://how.bitshares.works/_/downloads/en/master/pdf/
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1710.09437

132 References

[37] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured data,” ACM Trans-
actions on Computer Systems (TOCS), vol. 26, no. 2, 2008, 1–26.
(2008).

[38] A. Charapko, A. Ailijiang, and M. Demirbas, “Pigpaxos: Devour-
ing the communication bottlenecks in distributed consensus,” in
ACM International Conference on Management of Data (SIG-
MOD), 235–247. (2021), 2021.

[39] J. Chen, S. Gupta, S. Rahnama, and M. Sadoghi, “Power-of-
Collaboration: A sustainable resilient ledger built democrati-
cally,” IEEE Data Engineering Bulletin, vol. 45, no. 2, 2022,
25–36. (2022).

[40] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
et al., “Spanner: Google’s globally distributed database,” ACM
Transactions on Computer Systems (TOCS), vol. 31, no. 3, 2013,
1–22. (2013).

[41] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman,
“Narwhal and tusk: A dag-based mempool and efficient BFT
consensus,” in ACM European Conference on Computer Systems
(EuroSys), 34–50. (2022), 2022.

[42] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and
B. C. Ooi, “Towards scaling blockchain systems via sharding,” in
ACM International Conference on Management of Data (SIG-
MOD), 123–140. (2019), 2019.

[43] D. Dolev and H. R. Strong, “Distributed commit with bounded
waiting,” in IEEE Symposium on Reliability in Distributed Soft-
ware and Database Systems, 53–59. (1982), Jul. 1982.

[44] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal syn-
chronism needed for distributed consensus,” Journal of the ACM
(JACM), vol. 34, no. 1, 1987, 77–97. (1987).

[45] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E.
Weihl, “Reaching approximate agreement in the presence of
faults,” Journal of the ACM (JACM), vol. 33, no. 3, 1986, 499–
516. (1986).

The version of record is available at: http://dx.doi.org/10.1561/1900000075

References 133

[46] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,” Journal of the ACM (JACM),
vol. 35, no. 2, 1988, 288–323. (1988).

[47] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak,
“Proofs of Space,” in Advances in Cryptology (CRYPTO), 585–
605. (2015), 2015.

[48] R. Elmasri and S. B. Navathe, Database systems, vol. 9. Pearson
Education. (2011), 2011.

[49] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty process,” Journal of the
ACM (JACM), vol. 32, no. 2, 1985, 374–382. (1985).

[50] H. Garcia-Molina and D. Barbara, “How to assign votes in a
distributed system,” Journal of the ACM (JACM), vol. 32, no. 4,
1985, 841–860. (1985).

[51] S. Gazzaz, V. Chakraborty, and F. Nawab, “Croesus: Multi-stage
processing and transactions for video-analytics in edge-cloud
systems,” in IEEE International Conference on Data Engineering
(ICDE), 1463–1476. (2022), 2022.

[52] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” in ACM Symposium on Operating Systems Principles
(SOSP), 29–43. (2003), 2003.

[53] D. K. Gifford, “Weighted voting for replicated data,” in ACM
Symposium on Operating Systems Principles (SOSP), 150–162.
(1979), 1979.

[54] G. Golan Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. Reiter, D.-A. Seredinschi, O. Tamir, and A. Tomescu, “SBFT:
A scalable and decentralized trust infrastructure,” in IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN), 568–580. (2019), 2019.

[55] V. Gramoli, L. Bass, A. Fekete, and D. W. Sun, “Rollup: Non-
disruptive rolling upgrade with fast consensus-based dynamic
reconfigurations,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 9, 2015, 2711–2724. (2015).

[56] J. N. Gray, “Notes on data base operating systems,” in Operating
Systems, An Advanced Course, ser. Lecture Notes in Computer
Science, vol. 60, Springer, 1978, 393–481. (1978).

The version of record is available at: http://dx.doi.org/10.1561/1900000075

134 References

[57] J. Gray, “The transaction concept: Virtues and limitations (in-
vited paper),” in International Conference on Very Large Data
Bases (VLDB), 144–154. (1981), 1981.

[58] J. Gray and L. Lamport, “Consensus on transaction commit,”
ACM Transactions on Database Systems (TODS), vol. 31, no. 1,
2006, 133–160. (2006).

[59] R. Guerraoui, “Revisiting the relationship between non-blocking
atomic commitment and consensus,” in International Workshop
on Distributed Algorithms, 87–100. (1995), 1995.

[60] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why does the cloud stop
computing? lessons from hundreds of service outages,” in ACM
Symposium on Cloud Computing (SoCC), 1–16. (2016), 2016.

[61] S. Gupta, M. J. Amiri, and M. Sadoghi, “Chemistry behind
agreement,” in Conference on Innovative Data Systems Research
(CIDR). (2023), 2023.

[62] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi, “Proof-
of-execution: Reaching consensus through fault-tolerant spec-
ulation,” in International Conference on Extending Database
Technology (EDBT), 301–312. (2021), 2021.

[63] S. Gupta, J. Hellings, and M. Sadoghi, “Brief announcement:
Revisiting consensus protocols through wait-free parallelization,”
in International Symposium on Distributed Computing (DISC),
vol. 146, 44:1–44:3. (2019), 2019.

[64] S. Gupta, J. Hellings, and M. Sadoghi, Fault-Tolerant Distributed
Transactions on Blockchain, ser. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers. (2021), 2021.

[65] S. Gupta, J. Hellings, and M. Sadoghi, “RCC: resilient concurrent
consensus for high-throughput secure transaction processing,”
in IEEE International Conference on Data Engineering (ICDE),
1392–1403. (2021), 2021.

[66] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “ResilientDB:
Global scale resilient blockchain fabric,” Proceedings of the VLDB
Endowment, vol. 13, no. 6, 2020, 868–883. (2020).

The version of record is available at: http://dx.doi.org/10.1561/1900000075

References 135

[67] S. Gupta, S. Rahnama, E. Linsenmayer, F. Nawab, and M.
Sadoghi, “Reliable transactions in serverless-edge architecture,”
in IEEE International Conference on Data Engineering (ICDE).
(2023), 2023.

[68] S. Gupta, S. Rahnama, S. Pandey, N. Crooks, and M. Sadoghi,
“Dissecting BFT consensus: In trusted components we trust!”
In ACM European Conference on Computer Systems (EuroSys),
2023.

[69] S. Gupta, S. Rahnama, and M. Sadoghi, “Permissioned block-
chain through the looking glass: Architectural and implemen-
tation lessons learned,” in IEEE International Conference on
Distributed Computing Systems (ICDCS), pp. 754–764, 2020.

[70] S. Gupta and M. Sadoghi, “EasyCommit: A non-blocking two-
phase commit protocol,” in International Conference on Extend-
ing Database Technology (EDBT), 157–168. (2018), 2018.

[71] V. Hadzilacos and S. Toueg, “A modular approach to fault-
tolerant broadcasts and related problems,” Cornell University.
(1994), Tech. Rep., 1994.

[72] T. Haerder and A. Reuter, “Principles of transaction-oriented
database recovery,” ACM computing surveys (CSUR), vol. 15,
no. 4, 1983, 287–317. (1983).

[73] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing:
One step forward, two steps back,” in Conference on Innovative
Data Systems Research (CIDR). (2019), 2019.

[74] J. Hellings, S. Gupta, S. Rahnama, and M. Sadoghi, “On the
correctness of speculative consensus,” CoRR, vol. abs/2204.03552.
(2022), 2022. arXiv: 2204.03552.

[75] J. Hellings, D. P. Hughes, J. Primero, and M. Sadoghi, “Cer-
berus: Minimalistic multi-shard byzantine-resilient transaction
processing,” CoRR, vol. abs/2008.04450. (2020), 2020. arXiv:
2008.04450.

[76] J. Hellings and M. Sadoghi, “Brief announcement: The fault-
tolerant cluster-sending problem,” in International Symposium
on Distributed Computing (DISC), 45:1–45:3. (2019), 2019.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

https://arxiv.org/abs/2204.03552
https://arxiv.org/abs/2008.04450

136 References

[77] J. Hellings and M. Sadoghi, “Byshard: Sharding in a byzantine
environment,” Proceedings of the VLDB Endowment, vol. 14,
no. 11, 2021, 2230–2243. (2021).

[78] J. Hellings and M. Sadoghi, “Byzantine cluster-sending in ex-
pected constant communication,” CoRR, vol. abs/2108.08541.
(2021), 2021. arXiv: 2108.08541.

[79] J. Hellings and M. Sadoghi, “The fault-tolerant cluster-sending
problem,” in International Symposium on Foundations of In-
formation and Knowledge Systems (FoIKS), 168–186. (2022),
2022.

[80] M. Herlihy, L. Shrira, and B. Liskov, “Cross-chain deals and
adversarial commerce,” Proceedings of the VLDB Endowment,
vol. 13, no. 2, 2019, 100–113. (2019).

[81] H. Howard, A. Charapko, and R. Mortier, “Fast flexible paxos:
Relaxing quorum intersection for fast paxos,” in International
Conference on Distributed Computing and Networking, 186–190.
(2021), 2021.

[82] H. Howard, D. Malkhi, and A. Spiegelman, “Flexible paxos:
Quorum intersection revisited,” in International Conference on
Principles of Distributed Systems (OPODIS), vol. 70, 25:1–25:14.
(2016), 2017.

[83] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper:
Wait-free coordination for internet-scale systems,” in USENIX
Annual Technical Conference (ATC). (2010), 2010.

[84] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar,
J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson,
“Cloud programming simplified: A berkeley view on serverless
computing,” CoRR, vol. abs/1902.03383. (2019), 2019. arXiv:
1902.03383.

[85] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-
performance broadcast for primary-backup systems,” in IEEE/
IFIP International Conference on Dependable Systems & Net-
works (DSN), 245–256. (2011), 2011.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

https://arxiv.org/abs/2108.08541
https://arxiv.org/abs/1902.03383

References 137

[86] M. F. Kaashoek and A. S. Tanenbaum, “Group communication
in the amoeba distributed operating system,” in International
Conference on Distributed Computing Systems, 222–230. (1991),
1991.

[87] M. Kazhamiaka, B. Memon, C. Kankanamge, S. Sahu, S. Rizvi, B.
Wong, and K. Daudjee, “Sift: Resource-efficient consensus with
rdma,” in International Conference on Emerging Networking
Experiments And Technologies, 260–271. (2019), 2019.

[88] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All
you need is DAG,” in ACM Symposium on Principles of Dis-
tributed Computing (PODC), A. Miller, K. Censor-Hillel, and
J. H. Korhonen, Eds., 165–175. (2021), 2021.

[89] B. Kemme, R. Jiménez-Peris, and M. Patiño-Martínez, “Data-
base replication,” Synthesis Lectures on Data Management, vol. 5,
no. 1, 2010, pp. 1–153.

[90] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure Proof-of-Stake blockchain protocol,” in Ad-
vances in Cryptology (CRYPTO), 357–388. (2017), Springer,
2017.

[91] S. King and S. Nadal, PPCoin: Peer-to-peer crypto-currency
with Proof-of-Stake. (2012), 2012. url: https://www.peercoin.
net/whitepapers/peercoin-paper.pdf.

[92] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta,
and B. Ford, “OmniLedger: A secure, scale-out, decentralized
ledger via sharding,” in IEEE Symposium on Security and Pri-
vacy (S&P), 583–598. (2018), 2018.

[93] J. Kończak, P. T. Wojciechowski, N. Santos, T. Żurkowski, and
A. Schiper, “Recovery algorithms for paxos-based state machine
replication,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 18, no. 2, 2019, 623–640. (2019).

[94] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: Speculative byzantine fault tolerance,” ACM Trans-
actions on Computing Systems, vol. 27, no. 4, 2009, 7:1–7:39.
(2009).

The version of record is available at: http://dx.doi.org/10.1561/1900000075

https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://www.peercoin.net/whitepapers/peercoin-paper.pdf

138 References

[95] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete,
“Mdcc: Multi-data center consistency,” in ACM European Con-
ference on Computer Systems (EuroSys), 113–126. (2013), 2013.

[96] P. Kuznetsov, A. Tonkikh, and Y. X. Zhang, “Revisiting optimal
resilience of fast byzantine consensus,” in ACM Symposium on
Principles of Distributed Computing (PODC), 343–353. (2021),
2021.

[97] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM (CACM),
vol. 21, no. 7, 1978, 558–565. (1978).

[98] L. Lamport, “The part-time parliament,” ACM Transactions on
Computer Systems, vol. 16, no. 2, 1998, 133–169. (1998).

[99] L. Lamport, “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, 2001, 18–25. (2001).

[100] L. Lamport, “Generalized consensus and paxos,” Technical Re-
port MSR-TR-2005-33, Microsoft Research. (2005), 2005.

[101] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, no. 2,
2006, 79–103. (2006).

[102] L. Lamport, D. Malkhi, and L. Zhou, “Stoppable paxos,” TechRe-
port, Microsoft Research. (2008), 2008.

[103] L. Lamport, D. Malkhi, and L. Zhou, “Vertical paxos and
primary-backup replication,” in ACM symposium on Principles
of Distributed Computing (PODC), 312–313. (2009), 2009.

[104] L. Lamport, D. Malkhi, and L. Zhou, “Reconfiguring a state
machine,” ACM SIGACT News, vol. 41, no. 1, 2010, 63–73.
(2010).

[105] L. Lamport and M. Massa, “Cheap paxos,” in International Con-
ference on Dependable Systems and Networks, 307–314. (2004),
2004.

[106] L. Lamport, R. Shortak, and M. Pease, “The byzantine generals
problem,” ACM Transactions on Programming Languages and
Systems, vol. 4, no. 3, 1982, 382–401. (1982).

[107] B. Lampson and D. Lomet, “A new presumed commit optimiza-
tion for two phase commit,” in International Conference on Very
Large Data Bases (VLDB), 630–640. (1993), 1993.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

References 139

[108] B. Lampson and H. E. Sturgis, “Crash recovery in a distributed
data storage system,” in Computer Science Lab, Xerox Parc,
Palo Alto, CA, Technical Report. (1976), 1976.

[109] B. W. Lampson, “How to build a highly available system using
consensus,” in International Workshop on Distributed Algorithms,
1–17. (1996), 1996.

[110] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. Ports,
“Just say NO to paxos overhead: Replacing consensus with net-
work ordering,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 467–483. (2016), 2016.

[111] W. Li, S. Andreina, J.-M. Bohli, and G. Karame, “Securing Proof-
of-Stake blockchain protocols,” in Data Privacy Management,
Cryptocurrencies and Blockchain Technology, 297–315. (2017),
Springer, 2017.

[112] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur,
and J. Howell, “The smart way to migrate replicated stateful
services,” in ACM SIGOPS European Conference on Computer
Systems (EuroSys), 103–115. (2006), 2006.

[113] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and
P. Saxena, “A secure sharding protocol for open blockchains,” in
ACM SIGSAC Conference on Computer and Communications
Security, 17–30. (2016), 2016.

[114] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. El Ab-
badi, “Low-latency multi-datacenter databases using replicated
commit,” Proceedings of the VLDB Endowment, vol. 6, no. 9,
2013, 661–672. (2013).

[115] S. Maiyya, F. Nawab, D. Agrawal, and A. E. Abbadi, “Unifying
consensus and atomic commitment for effective cloud data man-
agement,” Proceedings of the VLDB Endowment, vol. 12, no. 5,
2019, 611–623. (2019).

[116] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building
efficient replicated state machine for wans,” in USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI),
369–384. (2008), 2008.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

140 References

[117] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring paxos:
A high-throughput atomic broadcast protocol,” in IEEE/IFIP
International Conference on Dependable Systems & Networks
(DSN), 527–536. (2010), 2010.

[118] M. Mihai Letia, N. Preguica, and M. Shapiro, “Crdts: Consistency
without concurrency control,” RR-6956, INRIA. (2009), 2009.

[119] N. Mittal and F. Nawab, “Coolsm: Distributed and cooperative
indexing across edge and cloud machines,” in IEEE International
Conference on Data Engineering (ICDE), 420–431. (2021), 2021.

[120] C. Mohan and B. Lindsay, “Efficient commit protocols for the tree
of processes model of distributed transactions,” ACM SIGOPS
Operating Systems Review, vol. 19, no. 2, 1985, 40–52. (1985).

[121] C. Mohan, R. Strong, and S. Finkelstein, “Method for distributed
transaction commit and recovery using byzantine agreement
within clusters of processors,” in Proceedings of the annual ACM
symposium on Principles of distributed computing (PODC), 89–
103 (1983), 1983.

[122] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more
consensus in egalitarian parliaments,” in ACM Symposium on
Operating Systems Principles (SOSP), 358–372. (2013), 2013.

[123] S. Mu, L. Nelson, W. Lloyd, and J. Li, “Consolidating concur-
rency control and consensus for commits under conflicts,” in
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), 517–532. (2016), 2016.

[124] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system,
2009. url: https://bitcoin.org/bitcoin.pdf.

[125] F. Nawab, “Wedgechain: A trusted edge-cloud store with asyn-
chronous (lazy) trust,” in IEEE International Conference on
Data Engineering (ICDE), 408–419. (2021), 2021.

[126] F. Nawab, D. Agrawal, and A. El Abbadi, “Dpaxos: Managing
data closer to users for low-latency and mobile applications,” in
ACM International Conference on Management of Data (SIG-
MOD), 1221–1236. (2018), 2018.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

https://bitcoin.org/bitcoin.pdf

References 141

[127] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new
primary copy method to support highly-available distributed
systems,” in ACM Symposium on Principles of Distributed Com-
puting (PODC), 8–17. (1988), 1988.

[128] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in USENIX Annual Technical Conference
(ATC), 305–319. (2014), 2014.

[129] M. T. Ozsu and P. Valduriez, Principles of distributed database
systems, vol. 2. Springer. (1999), 1999.

[130] S. Park, A. Kwon, G. Fuchsbauer, P. Gaži, J. Alwen, and K.
Pietrzak, “SpaceMint: A cryptocurrency based on proofs of
space,” in Financial Cryptography and Data Security, 480–499.
(2018), Springer, 2018.

[131] S. Patterson, A. J. Elmore, F. Nawab, D. Agrawal, and A. E.
Abbadi, “Serializability, not serial: Concurrency control and
availability in multi-datacenter datastores,” Proceedings of the
VLDB Endowment, vol. 5, no. 11, 2012, 1459–1470. (2012).

[132] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in
the presence of faults,” Journal of the ACM (JACM), vol. 27,
no. 2, 1980, 228–234. (1980).

[133] F. Pedone, R. Guerraoui, and A. Schiper, “Exploiting atomic
broadcast in replicated databases,” in European conference on
parallel processing (Euro-Par), 513–520. (1998), 1998.

[134] F. Pedone, R. Guerraoui, and A. Schiper, “The database state
machine approach,” Distributed and Parallel Databases (DAPD),
vol. 14, no. 1, 2003, 71–98. (2003).

[135] S. Rahnama, S. Gupta, R. Sogani, D. Krishnan, and M. Sadoghi,
“Ringbft: Resilient consensus over sharded ring topology,” in
International Conference on Extending Database Technology
(EDBT), 2:298–2:311. (2022), 2022.

[136] R. Ramakrishnan, J. Gehrke, and J. Gehrke, Database manage-
ment systems, vol. 3. McGraw-Hill New York. (2003), 2003.

[137] M. Sadoghi and S. Blanas, Transaction Processing on Modern
Hardware, ser. Synthesis Lectures on Data Management. Morgan
& Claypool Publishers. (2019), 2019.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

142 References

[138] N. Santos and A. Schiper, “Optimizing paxos with batching
and pipelining,” Theoretical Computer Science, vol. 496, 2013,
170–183. (2013).

[139] F. B. Schneider, “Implementing fault-tolerant services using the
state machine approach: A tutorial,” ACM Computing Surveys
(CSUR), vol. 22, no. 4, 1990, 299–319. (1990).

[140] A. Sharov and A. S. A. M. M. Stokely, “Take me to your leader!
online optimization of distributed storage configurations,” Pro-
ceedings of the VLDB Endowment, vol. 8, no. 12, 2015, 1490–
1501. (2015).

[141] D. Skeen, “Nonblocking commit protocols,” in ACM Interna-
tional Conference on Management of Data (SIGMOD), 133–142.
(1981), 1981.

[142] D. Skeen and M. Stonebraker, “A formal model of crash recov-
ery in a distributed system,” IEEE Transactions on Software
Engineering, no. 3, 1983, 219–228. (1983).

[143] J. Sousa and A. Bessani, “Separating the wheat from the chaff:
An empirical design for geo-replicated state machines,” in IEEE
Symposium on Reliable Distributed Systems (SRDS), 146–155.
(2015), 2015.

[144] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-
Kogias, “Bullshark: DAG BFT protocols made practical,” in
ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2705–2718. (2022), 2022.

[145] I. Stanoi, D. Agrawal, and A. El Abbadi, “Using broadcast
primitives in replicated databases,” in International Conference
on Distributed Computing Systems (ICDCS), 148–155 (1998),
1998.

[146] R. H. Thomas, “A majority consensus approach to concurrency
control for multiple copy databases,” ACM Transactions on
Database Systems (TODS), vol. 4, no. 2, 1979, 180–209. (1979).

[147] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi, “Calvin: Fast distributed transactions for parti-
tioned database systems,” in ACM International Conference on
Management of Data (SIGMOD), 1–12. (2012), 2012.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

References 143

[148] R. Van Renesse and D. Altinbuken, “Paxos made moderately
complex,” ACM Computing Surveys (CSUR), vol. 47, no. 3, 2015,
42:1–42:36. (2015).

[149] R. Van Renesse, N. Schiper, and F. B. Schneider, “Vive la
différence: Paxos vs. viewstamped replication vs. zab,” IEEE
Transactions on Dependable and Secure Computing, vol. 12, no. 4,
2014, 472–484. (2014).

[150] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin
one’s wheels? byzantine fault tolerance with a spinning primary,”
in IEEE Symposium on Reliable Distributed Systems (SRDS),
135–144. (2009), 2009.

[151] M. Whittaker, “Compartmentalizing state machine replication,”
Ph.D. dissertation, University of California, Berkeley. (2021),
2021.

[152] M. Whittaker, N. Giridharan, A. Szekeres, J. Hellerstein, H.
Howard, F. Nawab, and I. Stoica, “Matchmaker Paxos: A Re-
configurable Consensus Protocol,” Journal of Systems Research
(JSys), vol. 1, no. 1, Sep. 2021.

[153] M. J. Whittaker, N. Giridharan, A. Szekeres, J. M. Hellerstein,
H. Howard, F. Nawab, and I. Stoica, “Matchmaker paxos: A
reconfigurable consensus protocol [technical report],” CoRR,
vol. abs/2007.09468. (2020), 2020. arXiv: 2007.09468.

[154] M. J. Whittaker, N. Giridharan, A. Szekeres, J. M. Hellerstein,
and I. Stoica, “Bipartisan paxos: A modular state machine repli-
cation protocol,” CoRR, vol. abs/2003.00331. (2020), 2020. arXiv:
2003.00331.

[155] G. Wood, Ethereum: A secure decentralised generalised transac-
tion ledger, 2016. url: https://gavwood.com/paper.pdf.

[156] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.
Madhyastha, “Spanstore: Cost-effective geo-replicated storage
spanning multiple cloud services,” in ACM Symposium on Oper-
ating Systems Principles (SOSP), 292–308. (2013), 2013.

[157] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“HotStuff: BFT consensus with linearity and responsiveness,”
in ACM Symposium on Principles of Distributed Computing
(PODC), 347–356. (2019), 2019.

The version of record is available at: http://dx.doi.org/10.1561/1900000075

https://arxiv.org/abs/2007.09468
https://arxiv.org/abs/2003.00331
https://gavwood.com/paper.pdf

144 References

[158] V. Zakhary, D. Agrawal, and A. E. Abbadi, “Atomic commit-
ment across blockchains,” Proceedings of the VLDB Endowment,
vol. 13, no. 9, 2020, 1319–1331. (2020).

[159] V. Zakhary, F. Nawab, D. Agrawal, and A. El Abbadi, “Global-
scale placement of transactional data stores.,” in International
Conference on Extending Database Technology (EDBT), 385–396.
(2018), 2018.

[160] V. Zakhary, F. Nawab, D. Agrawal, and A. El Abbadi, “Db-
risk: The game of global database placement,” in International
Conference on Management of Data (SIGMOD), 2185–2188.
(2016), 2016.

[161] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
blockchain via full sharding,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS), 931–948. (2018),
2018.

[162] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and
D. R. Ports, “Building consistent transactions with inconsistent
replication,” ACM Transactions on Computer Systems (TOCS),
vol. 35, no. 4, 2018, 1–37. (2018).

The version of record is available at: http://dx.doi.org/10.1561/1900000075

	Introduction
	Principles of Consensus
	System Model
	Consensus Algorithms
	Using Consensus

	Background
	Overview and Model of Data Management
	Transaction Processing, Concurrency Control, and Recovery

	Consensus for Distributed Commit
	Overview of Distributed Databases and Atomic Commitment
	Consensus for Distributed Atomic Commit
	The Relation Between Atomic Commitment and Consensus

	Consensus for Data Replication
	Overview of Data Replication
	Consensus for Data Replication
	Consensus in Geo-Distributed Systems

	Consensus for Blockchain
	Consensus and Failure Model
	Consensus Foundation
	Consensus Landscape
	Consensus Topology
	Permissionless Consensus: Membership Model

	Conclusion
	References

